




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版2019版九年级上学期期末数学试题(II)卷姓名:_ 班级:_ 成绩:_一、单选题1 . 已知一次函数y1=ax+c和反比例函数y2=的图象如图所示,则二次函数y3=ax2+bx+c的大致图象是( ).ABCD2 . 我国传统文化中的“福禄寿喜”图(如图)由四个图案构成这四个图案中既是轴对称图形,又是中心对称图形的是( )ABCD3 . 已知一条抛物线的表达式为,则将该抛物线先向右平移个单位长度,再向上平移个单位长度,得到的新抛物线的表达式为( )ABCD4 . 如图,ADBECF,直线m,n与这三条平行线分别交于点A、B、C和点D、E、F,已知AB5,BC10,DE4,则EF的长为( )A12.5B12C8D45 . 下列事件中,是确定性事件的是( )A甲、乙、丙三人随意站成一排,而甲恰好站中间B从含有1个次品的10个产品中,随意抽取一个产品恰好是次品C早晨,太阳从西方升起D明天早晨八点是上班高峰期,学校门前的公路上必塞6 . 如图1所示矩形中,与满足的反比例函数关系如图2所示,等腰直角三角形的斜边过点,点,分别在,上,为的中点,则下列结论正确的是( )A当时,B当时,C当增大时,的值增大D当增大时,的值不变7 . 如图,正方形网格中的每个小正方形的边长为1,将绕旋转中心旋转某个角度后得到,其中点A,B,C的对应点是点,那么旋转中心是( )A点QB点PC点ND点M8 . 若x1,x2是方程x22x10的两个根,则x1x22x1x2的值为( )A3B1C0D49 . 若关于x的方程x24x+m=0没有实数根,则实数m的取值范围是Am4Bm4Cm4Dm410 . 如图,矩形ABCD的外接圆O与水平地面有唯一交点A,圆O的半径为4,且2若在没有滑动的情况下,将圆O向右滚动,使得O点向右移动了98,则此时该圆与地面交点在( )上ABCD二、填空题11 . 如图所示,菱形ABCD的边长为4,且AEBC于E,AFCD于F,B60,则EF长为_。12 . 如果函数是二次函数,那么k的值一定是_13 . 如图,扇形的圆心角AOB=60,半径为3cm若点C、D是的三等分点,则图中所有阴影部分的面积之和是_cm214 . 如图,P是反比例函数图象在第二象限上的一点,且矩形PEOF的面积为5,则反比例函数的表达式是_15 . 一张矩形纸片经过折叠得到一个三角形,(如图所示),则该矩形纸片的长与宽的比为_三、解答题16 . 在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系 销售量y(千克)34.83229.628售价x(元/千克)22.62425.226(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?17 . 如图,已知在ABC中,AB=AC,BC比AB大3,点G是ABC的重心,AG的延长线交边BC于点A过点G的直线分别交边AB于点P、交射线AC于点Q.(1)求AG的长;(2)当APQ=90时,直线PG与边BC相交于点M.求的值;(3)当点Q在边AC上时,设BP=x,AQ=y,求y关于x的函数解析式,并写出它的定义域.18 . 小明和小亮为下周日计划了三项活动,分别是看电影(记为A)、去郊游(记为B)、去图书馆(记为C)他们各自在这三项活动中任选一个,每项活动被选中的可能性相同(1)小明选择去郊游的概率为多少;(2)请用树状图或列表法求小明和小亮的选择结果相同的概率19 . 解方程:(1) (2)x236=0 (3)3x22x2=0 (4)20 . 如图,正方形ABCD中,AB=,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90得DF,连接AE,CA(1)若A,E,O三点共线,求CF的长;(2)求CDF的面积的最小值.21 . 如图,已知AB,AC分别是O的直径和弦,点G为上一点,GEAB,垂足为点E,交AC于点D,过点C的切线与AB的延长线交于点F,与EG的延长线交于点P,连接AG(1)求证:PCD是等腰三角形;(2)若点D为AC的中点,且F=30,BF=2,求PCD的周长和AG的长22 . 如图,已知抛物线y=+bx+c图象经过A(1,0),B(4,0)两点.(1)求抛物线的解析式;(2)若C(m,m1)是抛物线上位于第一象限内的点,D是线段AB上的一个动点(不与A、B重合),过点D分别作DEBC交AC于E,DFAC交BC于F.求证:四边形DECF是矩形;连结EF,线段EF的长是否存在最小值?若存在,求出EF的最小值;若不存在,请说明理由.23 . “棚户区改造”是政府为改造城镇危旧住房、改善困难家庭住房条件而推出的一项民生工程.加快棚户区和城市危房改造也是盘活城市存量资产的重要途径.某社区2017年为做好“棚户区改造”,投入资金1280万元用于异地安置,并规划投入异地安置资金逐年增加,2019年将在2017年的基础上增加投入异地安置资金1600万元.(1)从2017年到2019年,该社区投入异地安置资金的年平均增长率为多少?(2)在2019年异地安置的具体实施中,该社区计划投入资金不低于50万元用于优先搬迁租房奖励,规定前100户(含第100户)每户每天奖励8元,100户以后每户每天
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030中国番茄酱市场前景深度监测与未来消费战略发展分析报告
- 2025至2030中国电动打磨机行业市场占有率及投资前景评估规划报告
- 2025至2030中国环氧增塑剂行业市场深度调研及发展趋势与投资风险报告
- 心理辅导与残疾人餐具使用技巧的结合教育
- 教育技术安全性评估与风险管理策略
- 货车清洗培训课件大全
- 商业决策中的心理学个性化学习路径设计的重要性
- 抖音商户助播突发状况反应能力制度
- 全球铀矿资源分布2025年核能产业市场前景与挑战研究报告
- 公交优先战略2025年城市交通拥堵治理的公共交通服务质量评价体系报告
- 2025年高考军队院校征集和招录人员政治考核表(原表)
- 2024年人教版九年级英语单词默写单(微调版)
- 碾压式土石坝构造设计
- 利乐灌装保养执行
- (高清版)JGJ340-2015建筑地基检测技术规范
- 法人委托书范本
- 磁化率的测定
- 法院机关差旅费管理规定
- 新修改《工会法》重点解读PPT
- 基于MATLAB牛头刨床仿真分析毕业设计
- 虹鳟鱼养殖项目可行性研究报告写作范文
评论
0/150
提交评论