第22章__一元二次方程的解法复习--_第1页
第22章__一元二次方程的解法复习--_第2页
第22章__一元二次方程的解法复习--_第3页
第22章__一元二次方程的解法复习--_第4页
第22章__一元二次方程的解法复习--_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一元二次方程的解法,1、掌握直接开平方法、配方法、公式法和因式分解法;2、能根据方程特点,选用合适的方法解一元二次方程。,学习目标,知识回顾,返回,一、一元二次方程的概念,一般形式:ax2+bx+c=0(a0),x2+3x-3=0,1,-3,2,2,对应练习1:1.将一元二次方程(x-2)(2x+1)=3x2-5化为一般形式.其中二次项系数,常数项.,2.当m时,方程mx2-3x=2x2-mx+2是一元二次方程.当m时,方程(m2-4)x2-(m+2)x-3=0是一元一次方程.,知识回顾,二、一元二次方程的解法1.一元二次方程的解.满足方程,有根就是两个或是没有实数根,2.一元二次方程的几种解法(1)直接开平方法(2)配方法(3)公式法(4)因式分解法,解一元二次方程,一元二次方程的基本解法:,1.直接开平方法:2.配方法:3.公式法:4.因式分解法:,(其中b24ac0),一次项系数一半的平方.,右为零左分解两因式各求解,当二次项系数为1的时候,方程两边同时加上,解一元二次方程,解下列方程(1)x236;(2)x24x30;(3)2x2x1=0;(4)x25x0。,选用适当方法解下列一元二次方程,1、(2x+1)2=64(法)2、(x-2)2-(x+)2=0(法)3、(x-)2-(4-x)=(法)4、x-x-10=(法)5、x-x-=(法)6、2x4x-1=0(法)7、x-x-2=(法)8、y2-y-1=0(法),小结:选择方法的顺序是:直接开平方法因式分解法配方法公式法,因式分解,因式分解,配方,公式,配方,因式分解,公式,直接开平方,练习,练习:用最好的方法求解下列方程1)(3x-2)-49=02)(3x-4)=(4x-3),解:(3x-2)=493x-2=7x=x1=3,x2=,解:法一:3x-4=(4x-3)3x-4=4x-3或3x-4=-4x+3-x=1或7x=7x1=-1,x2=1,法二:(3x-4)(4x-3)=0(3x-4+4x-3)(3x-4-4x+3)=0(7x-7)(-x-1)=07x-7=0或-x-1=0x1=-1,x2=1,总结:方程中有括号时,应先用整体思想考虑有没有简单方法,若看不出合适的方法时,则把它去括号并整理为一般形式再选取合理的方法。,练习,练习,ax2+c=0=,ax2+bx=0=,ax2+bx+c=0=,因式分解法,公式法(配方法),2、公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的,因此在解方程时我们首先考虑能否应用“直接开平方法”、“因式分解法”等简单方法,若不行,再考虑公式法(适当也可考虑配方法),3、方程中有括号时,应先用整体思想考虑有没有简单方法,若看不出合适的方法时,则把它去括号并整理为一般形式再选取合理的方法。,1、,直接开平方法,因式分解法,小结:,选择适当的方法解下列方程:,作业,再见,1、填空:x2-3x+1=03x2-1=0-3t2+t=0x2-4x=22x2x=05(m+2)2=83y2-y-1=02x2+4x-1=0(x-2)2=2(x-2)适合运用直接开平方法适合运用因式分解法适合运用公式法适合运用配方法,3x2-1=0,5(m+2)2=8,-3t2+t=0,2x2x=0,(x-2)2=2(x-2),x2-3x+1=0,3y2-y-1=0,2x2+4x-1=0,x2-4x=2,公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的,因此在解方程时我们首先考虑能否应用“直接开平方法”、“因式分解法”等简单方法,若不行,再考虑公式法(适当也可考虑配方法),规律:一般地,当一元二次方程一次项系数为0时(ax2+c=0),应选用直接开平方法;若常数项为0(ax2+bx=0),应选用因式分解法;若一次项系数和常数项都不为0(ax2+bx+c=0),先化为一般式,看一边的整式是否容易因式分解,若容易,宜选用因式分解法,不然选用公式法;不过当二次项系数是1,且一次项系数是偶数时,用配方法也较简单。,公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的,因此在解方程时我们首先考虑能否应用“直接开平方法”、“因式分解法”等简单方法,若不行,再考虑公式法(适当也可考虑配方法),练习:用最好的方法求解下列方程1)(3x-2)-49=02)(3x-4)=(4x-3)3)4y=1y,解:(3x-2)=493x-2=7x=x1=3,x2=,解:法一:3x-4=(4x-3)3x-4=4x-3或3x-4=-4x+3-x=1或7x=7x1=-1,x2=1法二:(3x-4)(4x-3)2=0(3x-4+4x-3)(3x-4x+3)=0(7x-7)(-x-1)=07x-7=0或-x-1=0x1=-1,x2=1,解3y8y2=0b4ac=6443(-2)=880方程有两个不等实数根X=,选用适当的方法解方程,(2)x24x-1;,(1)(2x1)290;,请用四种方法解下列方程:4(x1)2=(2x5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论