19.1多边形内角和.ppt_第1页
19.1多边形内角和.ppt_第2页
19.1多边形内角和.ppt_第3页
19.1多边形内角和.ppt_第4页
19.1多边形内角和.ppt_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第19章四边形,导入新课,讲授新课,当堂练习,课堂小结,19.1多边形内角和,八年级数学下(HK)教学课件,情境引入,学习目标,1.掌握多边形的定义及有关概念,能区分凹凸多边形.2.会求多边形的对角线的条数.(难点)3.能通过不同方法探索多边形的内角和与外角和公式.(重点、难点)4.掌握正多边形的概念及内角的计算.(重点)5.了解四边形的不稳定性.,导入新课,情景引入,在实际生活当中,除了三角形,还有许多由线段围成的图形.观察图片,你能找到由一些线段围成的图形吗?,中国第一奇村诸葛八卦村,美国国防部大楼五角大楼,讲授新课,问题2观察画某多边形的过程,类比三角形的概念,你能说出什么是多边形吗?,在平面内,由若干条不在同一条直线上的线段首尾顺次相接组成的封闭图形叫做多边形.,问题1什么是三角形?,由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.,思考:比较多边形的定义与三角形的定义,为什么要强调“在平面内”呢?怎样命名多边形呢?,这是因为三角形中的三个顶点肯定都在同一个平面内,而四点,五点,甚至更多的点就有可能不在同一个平面内.,多边形用图形名称以及它的各个顶点的字母表示.字母要按照顶点的顺序书写,可以按顺时针或逆时针的顺序.,内角:多边形相邻两边组成的角,问题3根据图示,类比三角形的有关概念,说明什么是多边形的边、顶点、内角、外角,顶点,边,外角:多边形的边与它的邻边的延长线组成的角.,n边形有n个顶点,n条边,n个内角,2n个外角,多边形按它的边数可分为:三角形,四边形,五边形等等.其中三角形是最简单的多边形.,问题4请分别画出下列两个图形各边所在的直线,你能得到什么结论?,(1),(2),如图(1)这样,画出多边形的任何一条边所在的直线,整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形.本节我们只讨论凸多边形.,A,B,C,D,E,F,G,H,此类多边形被一条边所在的直线分成了两部分,不在这条直线同侧是凹多边形.,例1凸六边形纸片剪去一个角后,得到的多边形的边数可能是多少?画出图形说明,解:六边形截去一个角的边数有增加1、减少1、不变三种情况,新多边形的边数为7、5、6三种情况,如图所示.,一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条.,典例精析,A,B,C,D,E,定义:多边形中连接不相邻两个顶点的线段,叫做多边形的对角线.,线段AC是五边形ABCDE的一条对角线,多边形的对角线通常用虚线表示.,探究:请画出下列图形从某一顶点出发的对角线的条数:,0,1,2,3,5,n-3,1,2,3,4,6,n-2,从n(n3)边形的一个顶点可以作出(n-3)条对角线.将多边形分成(n-2)个三角形.,n(n3)边形共有对角线条.,归纳总结,画一画:画出下列多边形的全部对角线.,问题2你知道长方形和正方形的内角和是多少度?,问题1三角形内角和是多少度?,三角形内角和是180.,都是360.,问题3猜想任意四边形的内角和是多少度?,猜想:四边形ABCD的内角和是360.,问题4你能用以前学过的知识说明一下你的结论吗?,猜想与证明,方法1:如图,连接AC,四边形被分为两个三角形,四边形ABCD内角和为1802=360.,E,方法2:如图,在CD边上任取一点E,连接AE,DE,该四边形被分成三个三角形,四边形ABCD的内角和为1803-(AEB+AED+CED)=1803-180=360.,方法3:如图,在四边形ABCD内部取一点E,连接AE,BE,CE,DE,把四边形分成四个三角形:ABE,ADE,CDE,CBE.四边形ABCD内角和为:1804-(AEB+AED+CED+CEB)=1804-360=360.,E,P,方法4:如图,在四边形外任取一点P,连接PA、PB、PC、PD将四边形变成有一个公共顶点的四个三角形.,四边形ABCD内角和为1803180=360.,这四种方法都运用了转化思想,把四边形分割成三角形,转化到已经学了的三角形内角和求解.,结论:四边形的内角和为360.,例2:如果一个四边形的一组对角互补,那么另一组对角有什么关系?试说明理由.,解:,如图,四边形ABCD中,A+C=180.,A+B+C+D=(42)180=360,,BD=360(AC)=360180=180.,如果一个四边形的一组对角互补,那么另一组对角互补.,【变式题】如图,在四边形ABCD中,A与C互补,BE平分ABC,DF平分ADC,若BEDF,求证:DCF为直角三角形,证明:在四边形ABCD中,A与C互补,ABC+ADC=180,BE平分ABC,DF平分ADC,CDF+EBF=90,BEDF,EBF=CFD,CDF+CFD=90,故DCF为直角三角形,运用了整体思想,问题5你能仿照求四边形内角和的方法,选一种方法求五边形和六边形内角和吗?,内角和为1803=540.,内角和为1804=720.,0,n-3,1,2,3,1,2,3,4,n-2,(n-2)180,1180=180,2180=360,3180=540,4180=720,由特殊到一般,分割,多边形,三角形,分割点与多边形的位置关系,顶点,边上,内部,外部,转化思想,总结归纳,多边形的内角和公式,n边形内角和等于(n-2)180.,例3一个多边形的内角和比四边形的内角和多720,并且这个多边形的各内角都相等,这个多边形的每个内角是多少度?,解:设这个多边形边数为n,则(n-2)180=360+720,解得n=8,这个多边形的每个内角都相等,(8-2)180=1080,它每一个内角的度数为10808=135,例4如图,在五边形ABCDE中,C=100,D=75,E=135,AP平分EAB,BP平分ABC,求P的度数,解析:根据五边形的内角和等于540,由C,D,E的度数可求EAB+ABC的度数,再根据角平分线的定义可得PAB与PBA的角度和,进一步求得P的度数,可运用了整体思想,解:EAB+ABC+C+D+E=540,C=100,D=75,E=135,EAB+ABC=540-C-D-E=230.AP平分EAB,PABEAB,同理可得ABPABC,P+PAB+PBA=180,P=180-PAB-PBA=180(EAB+ABC)=180230=65,小刚每跑完一圈,身体转过的角度之和是多少?,多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角.如图,A的外角是1.,多边形所有外角的和叫做这个多边形的外角和.,概念学习,如图,在五边形的每个顶点处各取一个外角,问题1:任意一个外角和它相邻的内角有什么关系?问题2:五个外角加上它们分别相邻的五个内角和是多少?,互补,5180=900,五边形外角和,=360,=5个平角,五边形内角和,=5180,(52)180,结论:五边形的外角和等于360.,问题3:这五个平角和与五边形的内角和、外角和有什么关系?,在n边形的每个顶点处各取一个外角,这些外角的和叫做n边形的外角和,n边形外角和,n边形的外角和等于360.,(n2)180,=360,=n个平角-n边形内角和,=n180,思考:n边形的外角和又是多少呢?,与边数无关,问题4:回想正多边形的性质,你知道正多边形的每个内角是多少度吗?每个外角呢?为什么?,每个内角的度数是,每个外角的度数是,练一练:(1)若一个正多边形的内角是120,那么这是正_边形.(2)已知多边形的每个外角都是45,则这个多边形是_边形.,六,正八,例5已知一个多边形的每个内角与外角的比都是7:2,求这个多边形的边数.,解法一:设这个多边形的内角为7x,外角为2x,根据题意得,7x+2x=180,,解得x=20.,即每个内角是140,每个外角是40.,36040=9.,答:这个多边形是九边形.,还有其他解法吗?,解法二:设这个多边形的边数为n,根据题意得,解得n=9.,答:这个多边形是九边形.,【变式题】一个正多边形的一个外角比一个内角大60,求这个多边形的每个内角的度数及边数,解:设该正多边形的内角是x,外角是y,则得到一个方程组解得而任何多边形的外角和是360,则该正多边形的边数为360120=3,故这个多边形的每个内角的度数是60,边数是三条,例6如图,在正五边形ABCDE中,连接BE,求BED的度数,解:由题意得AB=AE,AEB=(180-A)=36,BED=AED-AEB=108-36=72.,定义:多边形中,各个角都相等,各条边都相等,这样的多边形叫做正多边形.,想一想:下列多边形是正多边形吗?如果不是,请说明为什么?,答:都不是,第一个图形不符合四个角都相等;第二个图形不符合各边都相等.,60,90,120,完成下面的表格:,108,135,四边形具有不稳定性:各边的长确定后,图形形状不能确定.,当堂练习,1.下列多边形中,不是凸多边形的是(),B,2.把一张形状是多边形的纸片剪去其中一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形,A,3.九边形的对角线有()A.25条B.31条C.27条D.30条,C,4.若从一个多边形的一个顶点出发,最多可以引10条对角线,则这是边形.,十三,5.过八边形的一个顶点画对角线,把这个八边形分割成个三角形.,6,6.如图所示,小华从点A出发,沿直线前进10米后左转24,再沿直线前进10米,又向左转24,照这样走下去,他第一次回到出发地点A时,走的路程一共是_米,150,7.一个多边形的内角和不可能是()A.1800B.540C.720D.810,D,8.一个多边形从一个顶点可引对角线3条,这个多边形内角和等于()A.360B.540C.720D.900,C,9.一个多边形的内角和为1800,截去一个角后,求得到的多边形的内角和.,解:180018010,原多边形边数为10212.一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1,新多边形的边数可能是11,12,13,新多边形的内角和可能是1620,1800,1980.,能力提升:如图,求12345

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论