




已阅读5页,还剩64页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2first-orderdifferentialequation,2.3linearequations,2.2separablevariables,2.1Solutioncurveswithoutthesolution,上页,下页,铃,结束,返回,首页,2.4exactequation,2.5solutionsbysubstitutions,Ifwecanneitherfindnorinventamethodforsolvingit,2.1Solutioncurveswithoutthesolution,analytically,itisoftenpossibletogleanuseful,Informationaboutthenatureofsolutionsdirectlyfrom,Thedifferentialequationitself.,Integralcurves,一条曲线,称为微分方程的积分曲线。,方向场。,在方向场中,方向相同的点的几何轨迹为等斜线。,充分接近的值,就可得到足够密集的等斜线族。,2.2separablevariables,Thedifferentialequation,Solutionbyintegration,Whenfisindependentofthevariabley-thatis,canbesolvedbyintegration.Ifg(x)isacontinuous,function,thenintegratingbothsidesof(1)givesthe,solution,whereG(x)isanantiderivative(indefiniteintegral),ofg(x).,Definition2.1separableequation,Afirst-orderdifferentialequationoftheform,issaidtobeseparableortohaveseparable,variables.,Forexample,theequation,areseparableandnonseparable,respectively.,whereH(y)andG(x)areantiderivativesof,Observethatbydividingbythefunctionh(y)we,canwriteaseparableequationas,andtherefore,andg(x),respectively.,Notethereisnoneedtousetwoconstantsinthe,Methodofsolution,Aone-parameterfamilyofsolutions,usuallygiven,implicitly,isobtainedbyintegratingbothsidesof,integrationofaseparableequation.,Integratedbybothsides,Example1solve,solutionrewritingtheequation,get,cisanarbitraryconstant,Example2solvetheinitial-valueproblem,Solutionpleaseseparatethevariables,fromwhichitfollowsthat,thegeneralsolution,Integratedbytheboth,get,arbitraryconstant,that,Otherwise,theequationalsohavethesolution,Inordertodeterminetheparticularsolution,put,Therefore,theparticularsolutionis,intotheordinarysolutioninordertodefine,integratedbythebothsides,Example3findthegeneralsolutionof,P(x)iscontinuousfunctionofx.,There,Solutionseparatethevariables,get,isanarbitraryconstant.,Otherwise,obviouslyy=0alsoisthesolution,Fromthedefineoflog,weget,of(2).If(3)mayletc=0,they=0isinthe(3),Let,have,therefore,thegeneralsolutionof(2)is(3),therecisanarbitraryconstant.,Weonlyintroducetwotypes,2reductiontoseparationofvariables,Iscalledhomogeneousequation,g(u)iscontinuous,1)theform,functionofu.,Thisisaseparableequation.,Theaboveequationisaseparableequation.,Ifexistu=u0,andg(u0)-u0=0.Wecanhavetheresult,u=u0,isasolutionoftheaboveequation,soy=u0,isasolutionofthepreviousequation.,Solution,Example1solvetheequation,puttheaboveintotheequation,get,Let,Lettheaboveseparatevariableandintegrate,Have,Otherwise,theequationhavesolutiontgu=0,thatistosaysinu=0,thereforethesolutionis,Exercisesolvetheequation,alsocantransformtotheseparatevariable,2)theform,separatelyareconstants.,equation,Wediscussitbythreecases.,(1)thecaseof,Weneedusethesubstitution,theequation(1)cantransformintoseparate,variableequation.,(2)theform,Supposetheratioisk,thatistosay,Thentheequationcanbe,Let,Thisisaseparablevariableequation.,theequationbecometo,(3)theform,if,Andtheequation(1)becomeinto,Then,Put,Solutionwesolvethegroupofequation,Example2solvetheequation,intotheequation(2),get,if,solutionof(2)is,Alsoisthesolution.therefore,thegeneral,Weeasilyaffirm,There,cisanarbitraryconstant.,Prooftheequation,andsolvethefollowingequations,separableequationbytranslation,canbetranslated,Linearfirst-orderDE,2.3linearequations,thefirstdegreeinthedependentvariableandallits,Adifferentialequationissaidtobelinearwhenitisof,derivatives.Whenn=1in(6)ofSection1.1,weobtain,alinearfirst-orderdifferentialequation.,Afirst-orderdifferentialequationoftheform,Linearequation,Wheng(x)=0,thelinearequationissaidtobe,issaidtobealinearequation.,homogeneous(齐次的);otherwise,itis,Non-homogeneous(非齐次的).,a1(x),weobtainamoreusefulform,thestandardform,Bydividingbothsidesof(1)bytheleadcoefficient,Weseekasolutionof(2)onanintervalIforwhich,ofalinearequation:,bothfunctionsPandfarecontinuous.,Theprocedure,Weknowthesolutionof,Wesuppose:in(3)lettheconstantcbecomefunction,Is,Weusethesolutionof(3)toobtainthesolutionof(2).,c(x),inordertosatisfytheequation(2),andobtainc(x),differentiate,obtain,therefore,let,Let(4)and(5)into(2),get,Thatistosay,Integrate,Thereisanarbitraryconstant.Let(6)into(4),obtain,Thisisthegeneralsolutionof(2).,isvariationofparameter(常数变易法),Themethodoflettingconstantbecomeintofunction,Example1,solvethegeneralsolutionoftheequation,here,nisaconstant.,Solutiontheequationbecometo,First,solvethehomogeneouslinearequationof,from,wecangetthegeneralsolutionofhomogeneous,linearequation,Second,weusethemethodvariationofparameter,tosolvethenon-homogeneouslinearequation.C,changeintoundefinedfunctionc(x)ofx,thatis,Differentiate,get,Thatistosay,Integrated,get,Thesolutionofprimaryequationis,Example2solvetheequation,solutiontheprimaryequationisntlinearequation,ofy,butwecanchangeit,Xislookedasundefinedfunction,yislookedas,independentvariables.,First,solve,getthesolution,usethemethodofvariationparameter,clookedas,c(y),differentiateit,get,Thatistosay,Otherwise,thegeneralsolutionofprimaryequationis,Here,isanarbitraryconstant.,2.4exactequation(恰当方程),differentialoffunctionoftwovariables,Ifz=f(x,y)isafunctionoftwovariableswithcontinuous,firstpartialderivativesinaregionRofthexy-plane,then,itsdifferentialis,Nowiff(x,y)=c,itfollowsfrom(1)that,Definition2.3exactequation(恰当方程),AdifferentialexpressionM(x,y)dx+N(x,y)dyisan,exactdifferential(恰当微分)inaregionRofthexy-,planeifitcorrespondstothedifferentialofsome,functionf(x,y).Afirst-orderdifferentialequationofthe,form,issaidtobeanexactequationiftheexpressionon,theleft-handsideisanexactdifferential.,Forexample,isanexactequation,because,Notice,if,then,Theorem2.1criterionforanexactdifferential,(恰当微分的判定),LetM(x,y)andN(x,y)becontinuousandhave,continuousfirstpartialderivativesinrectangular,regionRdefinedby,Thenanecessaryandsufficientconditionthat,beanexactdifferentialis,Methodofsolution,If,thenexistafunctionfforwhich,Theimplicitsolutionoftheequationisf(x,y)=c,Notice:theexpression,isIndependentofx.,Example1solvethegeneralsolutionof,Solution,equations,Therefore,theequationisexactequation.,Now,wefindfinordertosatisfythefollowingtwo,Integrate(1)aboutx,get,Takingthepartialderivativeofthelastexpression,withrespecttoyandsatisfy(2),Therefore,thegeneralsolutionis,cisanarbitraryconstant.,“分项组合”:先把那些已构成全微分的项分出,再把,剩下的项凑成全微分,又叫“凑微分”。应熟记一些简,简单的二元函数的全微分,,Example2solvetheequationofexample1,Solution,Thentheordinarysolutionis,There,Cisanarbitraryconstant.,Example3solvetheequation,Solution,because,theequationisanexactequation.,Integratingfactors(积分因子),Foranon-exactdifferentialequation,beanintegratingfactorof(4)is,itissometimespossibletofindanintegratingfactor,Isanexactdifferential.,Thenanecessaryandsufficientconditionthat,aftermultiplying,theleft-handsideof,Thatis,If,theequation(5)become,onlyonxis,isafunctionofxalone.,Thenanecessaryandsufficientconditionofdepends,Wecanobtaintheintegratingfactorof(4)is,Example1,thenonlinearfirst-orderdifferentialequation,Theintegratingfactoristhen,isnotexact.Withtheidentifications,AfterwemultiplythegivenDEby,theresultingequationis,Thatafamilyofsolutionsis,usingthemethodofintegratingfactortosolvethe,Example2,linearequation,and,Solutiontheequation(6)becometo,Have,Wemultiplytheequation(7)by,theresultingequationis,2.5solutionsbysubstitutions,Ifafunctionfpossessestheproperty,isahomogeneousfunctionofdegree3.,forsomerealnumbera,thenfissaidtobea,Forexample,Therefore,thefunction,homogeneousfunctionofdegreea,Afirst-orderDEindiffer
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 八条硬措施考试题及答案
- 解析卷江西省高安市七年级上册基本平面图形专题测试试题(含详细解析)
- 2025年大型商业综合体开业社会稳定风险评估与风险评估指标体系研究报告
- 2025年工业污染场地修复技术选择与成本效益优化策略与项目管理报告
- 2025年工业互联网平台数据加密算法效能优化与测评报告
- 2025年工业互联网平台网络流量整形技术在工业互联网平台产业融合创新中的应用报告
- 基础强化安徽省界首市中考数学真题分类(二元一次方程组)汇编定向攻克试题(含详细解析)
- 考点攻克福建泉州市永春第一中学7年级数学下册第六章 概率初步章节测试试题(解析版)
- 解析卷黑龙江省宁安市中考数学真题分类(一元一次方程)汇编定向测评试题(解析卷)
- 考点解析华东师大版8年级下册期末试题及答案详解(易错题)
- 动物疫病防治学课件
- 采石场合作协议合同范本
- 大学实验室物资管理办法
- 人大换届工作培训课件
- 工作密秘管理暂行办法
- 外包特殊过程管理办法
- 临时用电安全培训
- 法律法规培训
- 从邵逸夫医院看大型三甲医院医疗信息化多层设计与实践
- 心理韧性培育培训
- 实验室危险化学品安全培训
评论
0/150
提交评论