常微分方程第二章课件_第1页
常微分方程第二章课件_第2页
常微分方程第二章课件_第3页
常微分方程第二章课件_第4页
常微分方程第二章课件_第5页
已阅读5页,还剩64页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2first-orderdifferentialequation,2.3linearequations,2.2separablevariables,2.1Solutioncurveswithoutthesolution,上页,下页,铃,结束,返回,首页,2.4exactequation,2.5solutionsbysubstitutions,Ifwecanneitherfindnorinventamethodforsolvingit,2.1Solutioncurveswithoutthesolution,analytically,itisoftenpossibletogleanuseful,Informationaboutthenatureofsolutionsdirectlyfrom,Thedifferentialequationitself.,Integralcurves,一条曲线,称为微分方程的积分曲线。,方向场。,在方向场中,方向相同的点的几何轨迹为等斜线。,充分接近的值,就可得到足够密集的等斜线族。,2.2separablevariables,Thedifferentialequation,Solutionbyintegration,Whenfisindependentofthevariabley-thatis,canbesolvedbyintegration.Ifg(x)isacontinuous,function,thenintegratingbothsidesof(1)givesthe,solution,whereG(x)isanantiderivative(indefiniteintegral),ofg(x).,Definition2.1separableequation,Afirst-orderdifferentialequationoftheform,issaidtobeseparableortohaveseparable,variables.,Forexample,theequation,areseparableandnonseparable,respectively.,whereH(y)andG(x)areantiderivativesof,Observethatbydividingbythefunctionh(y)we,canwriteaseparableequationas,andtherefore,andg(x),respectively.,Notethereisnoneedtousetwoconstantsinthe,Methodofsolution,Aone-parameterfamilyofsolutions,usuallygiven,implicitly,isobtainedbyintegratingbothsidesof,integrationofaseparableequation.,Integratedbybothsides,Example1solve,solutionrewritingtheequation,get,cisanarbitraryconstant,Example2solvetheinitial-valueproblem,Solutionpleaseseparatethevariables,fromwhichitfollowsthat,thegeneralsolution,Integratedbytheboth,get,arbitraryconstant,that,Otherwise,theequationalsohavethesolution,Inordertodeterminetheparticularsolution,put,Therefore,theparticularsolutionis,intotheordinarysolutioninordertodefine,integratedbythebothsides,Example3findthegeneralsolutionof,P(x)iscontinuousfunctionofx.,There,Solutionseparatethevariables,get,isanarbitraryconstant.,Otherwise,obviouslyy=0alsoisthesolution,Fromthedefineoflog,weget,of(2).If(3)mayletc=0,they=0isinthe(3),Let,have,therefore,thegeneralsolutionof(2)is(3),therecisanarbitraryconstant.,Weonlyintroducetwotypes,2reductiontoseparationofvariables,Iscalledhomogeneousequation,g(u)iscontinuous,1)theform,functionofu.,Thisisaseparableequation.,Theaboveequationisaseparableequation.,Ifexistu=u0,andg(u0)-u0=0.Wecanhavetheresult,u=u0,isasolutionoftheaboveequation,soy=u0,isasolutionofthepreviousequation.,Solution,Example1solvetheequation,puttheaboveintotheequation,get,Let,Lettheaboveseparatevariableandintegrate,Have,Otherwise,theequationhavesolutiontgu=0,thatistosaysinu=0,thereforethesolutionis,Exercisesolvetheequation,alsocantransformtotheseparatevariable,2)theform,separatelyareconstants.,equation,Wediscussitbythreecases.,(1)thecaseof,Weneedusethesubstitution,theequation(1)cantransformintoseparate,variableequation.,(2)theform,Supposetheratioisk,thatistosay,Thentheequationcanbe,Let,Thisisaseparablevariableequation.,theequationbecometo,(3)theform,if,Andtheequation(1)becomeinto,Then,Put,Solutionwesolvethegroupofequation,Example2solvetheequation,intotheequation(2),get,if,solutionof(2)is,Alsoisthesolution.therefore,thegeneral,Weeasilyaffirm,There,cisanarbitraryconstant.,Prooftheequation,andsolvethefollowingequations,separableequationbytranslation,canbetranslated,Linearfirst-orderDE,2.3linearequations,thefirstdegreeinthedependentvariableandallits,Adifferentialequationissaidtobelinearwhenitisof,derivatives.Whenn=1in(6)ofSection1.1,weobtain,alinearfirst-orderdifferentialequation.,Afirst-orderdifferentialequationoftheform,Linearequation,Wheng(x)=0,thelinearequationissaidtobe,issaidtobealinearequation.,homogeneous(齐次的);otherwise,itis,Non-homogeneous(非齐次的).,a1(x),weobtainamoreusefulform,thestandardform,Bydividingbothsidesof(1)bytheleadcoefficient,Weseekasolutionof(2)onanintervalIforwhich,ofalinearequation:,bothfunctionsPandfarecontinuous.,Theprocedure,Weknowthesolutionof,Wesuppose:in(3)lettheconstantcbecomefunction,Is,Weusethesolutionof(3)toobtainthesolutionof(2).,c(x),inordertosatisfytheequation(2),andobtainc(x),differentiate,obtain,therefore,let,Let(4)and(5)into(2),get,Thatistosay,Integrate,Thereisanarbitraryconstant.Let(6)into(4),obtain,Thisisthegeneralsolutionof(2).,isvariationofparameter(常数变易法),Themethodoflettingconstantbecomeintofunction,Example1,solvethegeneralsolutionoftheequation,here,nisaconstant.,Solutiontheequationbecometo,First,solvethehomogeneouslinearequationof,from,wecangetthegeneralsolutionofhomogeneous,linearequation,Second,weusethemethodvariationofparameter,tosolvethenon-homogeneouslinearequation.C,changeintoundefinedfunctionc(x)ofx,thatis,Differentiate,get,Thatistosay,Integrated,get,Thesolutionofprimaryequationis,Example2solvetheequation,solutiontheprimaryequationisntlinearequation,ofy,butwecanchangeit,Xislookedasundefinedfunction,yislookedas,independentvariables.,First,solve,getthesolution,usethemethodofvariationparameter,clookedas,c(y),differentiateit,get,Thatistosay,Otherwise,thegeneralsolutionofprimaryequationis,Here,isanarbitraryconstant.,2.4exactequation(恰当方程),differentialoffunctionoftwovariables,Ifz=f(x,y)isafunctionoftwovariableswithcontinuous,firstpartialderivativesinaregionRofthexy-plane,then,itsdifferentialis,Nowiff(x,y)=c,itfollowsfrom(1)that,Definition2.3exactequation(恰当方程),AdifferentialexpressionM(x,y)dx+N(x,y)dyisan,exactdifferential(恰当微分)inaregionRofthexy-,planeifitcorrespondstothedifferentialofsome,functionf(x,y).Afirst-orderdifferentialequationofthe,form,issaidtobeanexactequationiftheexpressionon,theleft-handsideisanexactdifferential.,Forexample,isanexactequation,because,Notice,if,then,Theorem2.1criterionforanexactdifferential,(恰当微分的判定),LetM(x,y)andN(x,y)becontinuousandhave,continuousfirstpartialderivativesinrectangular,regionRdefinedby,Thenanecessaryandsufficientconditionthat,beanexactdifferentialis,Methodofsolution,If,thenexistafunctionfforwhich,Theimplicitsolutionoftheequationisf(x,y)=c,Notice:theexpression,isIndependentofx.,Example1solvethegeneralsolutionof,Solution,equations,Therefore,theequationisexactequation.,Now,wefindfinordertosatisfythefollowingtwo,Integrate(1)aboutx,get,Takingthepartialderivativeofthelastexpression,withrespecttoyandsatisfy(2),Therefore,thegeneralsolutionis,cisanarbitraryconstant.,“分项组合”:先把那些已构成全微分的项分出,再把,剩下的项凑成全微分,又叫“凑微分”。应熟记一些简,简单的二元函数的全微分,,Example2solvetheequationofexample1,Solution,Thentheordinarysolutionis,There,Cisanarbitraryconstant.,Example3solvetheequation,Solution,because,theequationisanexactequation.,Integratingfactors(积分因子),Foranon-exactdifferentialequation,beanintegratingfactorof(4)is,itissometimespossibletofindanintegratingfactor,Isanexactdifferential.,Thenanecessaryandsufficientconditionthat,aftermultiplying,theleft-handsideof,Thatis,If,theequation(5)become,onlyonxis,isafunctionofxalone.,Thenanecessaryandsufficientconditionofdepends,Wecanobtaintheintegratingfactorof(4)is,Example1,thenonlinearfirst-orderdifferentialequation,Theintegratingfactoristhen,isnotexact.Withtheidentifications,AfterwemultiplythegivenDEby,theresultingequationis,Thatafamilyofsolutionsis,usingthemethodofintegratingfactortosolvethe,Example2,linearequation,and,Solutiontheequation(6)becometo,Have,Wemultiplytheequation(7)by,theresultingequationis,2.5solutionsbysubstitutions,Ifafunctionfpossessestheproperty,isahomogeneousfunctionofdegree3.,forsomerealnumbera,thenfissaidtobea,Forexample,Therefore,thefunction,homogeneousfunctionofdegreea,Afirst-orderDEindiffer

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论