




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中考压轴题(七)1、如图,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC8cm,BC6cm,C90,EG4cm,EGF90,O 是EFG斜边上的中点如图,若整个EFG从图的位置出发,以1cm/s 的速度沿射线AB方向平移,在EFG 平移的同时,点P从EFG的顶点G出发,以1cm/s 的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,EFG也随之停止平移设运动时间为x(s),FG的延长线交 AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况)(1)当x为何值时,OPAC ?(2)求y与x 之间的函数关系式,并确定自变量x的取值范围(3)是否存在某一时刻,使四边形OAHP面积与ABC面积的比为1324?若存在,求出x的值;若不存在,说明理由(参考数据:1142 12996,1152 13225,1162 13456或4.42 19.36,4.52 20.25,4.62 21.16)2、在平面直角坐标系中,已知矩形ABCD中,边,边,且AB、AD分别在x轴、y轴的正半轴上,点A与坐标原点重合将矩形折叠,使点A落在边DC上,设点是点A落在边DC上的对应点(图1)(1)当矩形ABCD沿直线折叠时(如图1),求点的坐标和b的值;(2)当矩形ABCD沿直线折叠时, 求点的坐标(用k表示);求出k和b之间的关系式; 如果我们把折痕所在的直线与矩形的位置分为如图2、3、4所示的三种情形,请你分别写出每种情形时k的取值范围(将答案直接填在每种情形下的横线上)(图4)(图3)(图2)k的取值范围是 ; k的取值范围是 ;k的取值范围是 ;3、问题背景 某课外学习小组在一次学习研讨中,得到如下两个命题: 如图1,在正三角形ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若BON = 60,则BM = CN. 如图2,在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若BON = 90,则BM = CN.然后运用类比的思想提出了如下的命题: 如图3,在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若BON = 108,则BM = CN.任务要求 (1)请你从、三个命题中选择一个进行证明; (2)请你继续完成下面的探索: 如图4,在正n(n3)边形ABCDEF中,M、N分别是CD、DE上的点,BM与CN相交于点O,问当BON等于多少度时,结论BM = CN成立?(不要求证明) 如图5,在五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,当BON = 108时,请问结论BM = CN是否还成立?若成立,请给予证明;若不成立,请说明理由.(1)我选 .证明:4、如图,已知,以点为圆心,以长为半径的圆交轴于另一点,过点作交于点,直线交轴于点(1)求证:直线是的切线;(2)求点的坐标及直线的解析式;(3)有一个半径与的半径相等,且圆心在轴上运动的若与直线相交于两点,是否存在这样的点,使是直角三角形若存在,求出点的坐标;若不存在,请说明理由xyABCOFE5、如图,在平面直角坐标系中,直线分别与轴,轴交于点,点(1)以为一边在第一象限内作等边及的外接圆(用尺规作图,不要求写作法,但要保留作图痕迹);(2)若与轴的另一个交点为点,求,四点的坐标;(3)求经过,三点的抛物线的解析式,并判断在抛物线上是否存在点,使的面积等于的面积?若存在,请直接写出所有符合条件的点的坐标;若不存在,请说明理由中考压轴题(八)1、已知:抛物线与轴相交于两点,且()若,且为正整数,求抛物线的解析式;()若,求的取值范围;()试判断是否存在,使经过点和点的圆与轴相切于点,若存在,求出的值;若不存在,试说明理由;()若直线过点,与()中的抛物线相交于两点,且使,求直线的解析式2、如图,以O为原点的直角坐标系中,A点的坐标为(0,1),直线x=1交x轴于点B。P为线段AB上一动点,作直线PCPO,交直线x=1于点C。过P点作直线MN平行于x轴,交y轴于点M,交直线x=1于点N。(1)当点C在第一象限时,求证:OPMPCN;(2)当点C在第一象限时,设AP长为m,四边形POBC的面积为S,请求出S与m间的函数关系式,并写出自变量m的取值范围;(3)当点P在线段AB上移动时,点C也随之在直线x=1上移动,PBC是否可能成为等腰三角形?如果可能,求出所有能使PBC成为等腰直角三角形的点P的坐标;如果不可能,请说明理由。ABCNPMOxyx=1解 3、如图,已知抛物线与坐标轴的交点依次是,(1)求抛物线关于原点对称的抛物线的解析式;(2)设抛物线的顶点为,抛物线与轴分别交于两点(点在点的左侧),顶点为,四边形的面积为若点,点同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点,点同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点与点重合为止求出四边形的面积与运动时间之间的关系式,并写出自变量的取值范围;(3)当为何值时,四边形的面积有最大值,并求出此最大值;(4)在运动过程中,四边形能否形成矩形?若能,求出此时的值;若不能,请说明理由4、如图,在平面直角坐标系中,已知点,以为边在轴下方作正方形,点是线段与正方形的外接圆除点以外的另一个交点,连结与相交于点(1)求证:;(2)设直线是的边的垂直平分线,且与相交于点若是的外心,试求经过三点的抛物线的解析表达式;AEODCBGFxyl(3)在(2)的条件下,在抛物线上是否存在点,使该点关于直线的对称点在轴上?若存在,求出所有这样的点的坐标;若不存在,请说明理由5、在平面直角坐标系xOy中,已知直线l1经过点A(-2,0)和点B(0,),直线l2的函数表达式为,l1与l2相交于点PC是一个动圆,圆心C在直线l1上运动,设圆心C的横坐标是a过点C作CMx轴,垂足是点M(1)填空:直线l1的函数表达式是 ,交点P的坐标是 ,FPB的度数是 ;(2)当C和直线l2相切时,请证明点P到直线CM的距离等于C的半径R,并写出R=时a的值.(3)当C和直线l2不相离时,已知C的半径R=,记四边形NMOB的面积为S(其中点N是直线CM与l2的交点)S是否存在最大值?若存在,求出这个最大值及此时a的值;若不存在,请说明理由2134123-1-2-3-1yxOABEFPl1l2C解6、如图所示,在平面直角坐标中,四边形OABC是等腰梯形,BCOA,OA=7,AB=4, COA=60,点P为x轴上的个动点,点P不与点0、点A重合连结CP,过点P作PD交AB于点D(1)求点B的坐标;(2)当点P运动什么位置时,OCP为等腰三角形,求这时点P的坐标;(3)当点P运动什么位置时,使得CPD=OAB,且=,求这时点P的坐标。解7、已知两个关于的二次函数与;当时,;且二次函数的图象的对称轴是直线(1)求的值;(2)求函数的表达式;(3)在同一直角坐标系内,问函数的图象与的图象是否有交点?请说明理由8、南博汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆如果设每辆汽车降价万元,每辆汽车的销售利润为万元(销售利润销售价进货价)(1)求与的函数关系式;在保证商家不亏本的前提下,写出的取值范围;(2)假设这种汽车平均每周的销售利润为万元,试写出与之间的函数关系式;(3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大?最大利润是多少?解 中考压轴题(九)1、在矩形中,以为坐标原点,所在的直线为轴,建立直角坐标系然后将矩形绕点逆时针旋转,使点落在轴的点上,则和点依次落在第二象限的点上和轴的点上(如图)(1)求经过三点的二次函数解析式;(2)设直线与(1)的二次函数图象相交于另一点,试求四边形的周长(3)设为(1)的二次函数图象上的一点,求点的坐标解 2、如图1,已知中,过点作,且,连接交于点(1)求的长;(2)以点为圆心,为半径作,试判断与是否相切,并说明理由;(3)如图2,过点作,垂足为以点为圆心,为半径作;以点为圆心,为半径作若和的大小是可变化的,并且在变化过程中保持和相切,且使点在的内部,点在的外部,求和的变化范围ABCPEEABCP图1图23、设边长为2a的正方形的中心A在直线l上,它的一组对边垂直于直线l,半径为r的O的圆心O在直线l上运动,点A、O间距离为d(1)如图,当ra时,根据d与a、r之间关系,将O与正方形的公共点个数填入下表:d、a、r之间关系图公共点的个数dardarardardardar所以,当ra时,O与正方形的公共点的个数可能有个;(2)如图,当ra时,根据d与a、r之间关系,将O与正方形的公共点个数填入下表:d、a、r之间关系图公共点的个数dardaradarda所以,当ra时,O与正方形的公共点个数可能有个;图(3)如图,当O与正方形有5个公共点时,试说明ra;(4)就ra的情形,请你仿照“当时,O与正方形的公共点个数可能有 个”的形式,至少给出一个关于“O与正方形的公共点个数”的正确结论4、半径为2.5的O中,直径AB的不同侧有定点C和动点P已知BC :CA4 : 3,点P在上运动,过点C作CP的垂线,与PB的延长线交于点O(1)当点P与点C关于AB对称时,求CQ的长;(2)当点P运动到的中点时,求CQ的长; (3)当点P运动到什么位置时,CQ取到最大值?求此时CQ的长5、如图,直线与轴,轴分别相交于点,点,经过两点的抛物线与轴的另一交点为,顶点为,且对称轴是直线(1)求点的坐标;(2)求该抛物线的函数表达式;(3)连结请问在轴上是否存在点,使得以点为顶点的三角形与相似,若存在,请求出点的坐标;若不存在,请说明理由解 6、王师傅有两块板材边角料,其中一块是边长为60的正方形板子;另一块是上底为30,下底为120,高为60的直角梯形板子(如图),王师傅想将这两块板子裁成两块全等的矩形板材。他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板子的重叠部分为五边形ABCDE围成的区域(如图),由于受材料纹理的限制,要求裁出的矩形要以点B为一个顶点。(1)求FC的长;(2)利用图求出矩形顶点B所对的顶点到BC边的距离为多少时,矩形的面积最大?最大面积时多少?(3)若想使裁出的矩形为正方形,试求出面积最大的正方形的边长。7、已知抛物线与y轴的交点为C,顶点为M,直线CM的解析式并且线段CM的长为(1)求抛物线的解析式。(2)设抛物线与x轴有两个交点A(X1 ,0)、B(X2 ,0),且点A在B的左侧,求线段AB的长。(3)若以AB为直径作N,请你判断直线CM与N的位置关系,并说明理由。 中考压轴题(十)1、如图1所示,一张三角形纸片ABC,ACB=90,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成和两个三角形(如图2所示).将纸片沿直线(AB)方向平移(点始终在同一直线上),当点于点B重合时,停止平移.在平移过程中,与交于点E,与分别交于点F、P.(1)当平移到如图3所示的位置时,猜想图中的与的数量关系,并证明你的猜想;(2)设平移距离为,与重叠部分面积为,请写出与的函数关系式,以及自变量的取值范围;(3)对于(2)中的结论是否存在这样的的值;使得重叠部分的面积等于原面积的?若不存在,请说明理由. 图1图3图22、如图,足球场上守门员在处开出一高球,球从离地面1米的处飞出(在轴上),运动员乙在距点6米的处发现球在自己头的正上方达到最高点,距地面约4米高,球落地后又一次弹起据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半(1)求足球开始飞出到第一次落地时,该抛物线的表达式(2)足球第一次落地点距守门员多少米?(取)(3)运动员乙要抢到第二个落点,他应再向前跑多少米?(取)rg 初中数学资源网 收集整理3、如图,已知抛物线l1:y=x2-4的图象与x轴相交于A、C两点,B是抛物线l1上的动点(B不与A、C重合)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 轮岗实习工作总结
- 亲有过到挞无怨课件
- 检验主管工作总结
- 《诗经·月出》课件
- 研发经理年中工作总结
- 电磁波的辐射讲解
- 竣工环保验收汇报
- 疼痛病人的延续性护理
- 《草房子》课件导读
- 法医临床司法鉴定年终总结
- 2025年乡镇文旅部门工作人员招聘考试必-备知识点与模拟题集
- 2025年法学硕士专业知识考试试卷及答案解析
- GB 26488-2025镁合金压铸安全生产规范
- 森林消防队森林火灾扑救知识培训考试题库题库(附含答案)
- 焦虑症的课件
- 湖南美术出版社二年级上册美术教学计划
- 2025年西藏自治区事业单位招聘考试综合类专业能力测试试卷(新闻类)押题卷
- VOCs治理设备培训
- 2025年招聘面试技巧指南面试官角度下的面试题预测与应对策略
- 答案时代:AI顾问式电商崛起
- 算力中心能源管理与优化方案
评论
0/150
提交评论