



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
导数的概念教学目标与要求:理解导数的概念并会运用概念求导数。教学重点:导数的概念以及求导数教学难点:导数的概念教学过程:一、导入新课:上节我们讨论了瞬时速度、切线的斜率和边际成本。虽然它们的实际意义不同,但从函数角度来看,却是相同的,都是研究函数的增量与自变量的增量的比的极限。由此我们引出下面导数的概念。二、新授课:1.设函数在处附近有定义,当自变量在处有增量时,则函数相应地有增量,如果时,与的比(也叫函数的平均变化率)有极限即无限趋近于某个常数,我们把这个极限值叫做函数在处的导数,记作,即注:1.函数应在点的附近有定义,否则导数不存在。2.在定义导数的极限式中,趋近于0可正、可负、但不为0,而可能为0。3.是函数对自变量在范围内的平均变化率,它的几何意义是过曲线上点()及点)的割线斜率。4.导数是函数在点的处瞬时变化率,它反映的函数在点处变化的快慢程度,它的几何意义是曲线上点()处的切线的斜率。因此,如果在点可导,则曲线在点()处的切线方程为。5.导数是一个局部概念,它只与函数在及其附近的函数值有关,与无关。6.在定义式中,设,则,当趋近于0时,趋近于,因此,导数的定义式可写成。7.若极限不存在,则称函数在点处不可导。8.若在可导,则曲线在点()有切线存在。反之不然,若曲线在点()有切线,函数在不一定可导,并且,若函数在不可导,曲线在点()也可能有切线。一般地,其中为常数。特别地,。如果函数在开区间内的每点处都有导数,此时对于每一个,都对应着一个确定的导数,从而构成了一个新的函数。称这个函数为函数在开区间内的导函数,简称导数,也可记作,即函数在处的导数就是函数在开区间上导数在处的函数值,即。所以函数在处的导数也记作。注:1.如果函数在开区间内每一点都有导数,则称函数在开区间内可导。2.导数与导函数都称为导数,这要加以区分:求一个函数的导数,就是求导函数;求一个函数在给定点的导数,就是求导函数值。它们之间的关系是函数在点处的导数就是导函数在点的函数值。3.求导函数时,只需将求导数式中的换成就可,即4.由导数的定义可知,求函数的导数的一般方法是:(1).求函数的改变量。(2).求平均变化率。(3).取极限,得导数。例1.求在3处的导数。例2.已知函数(1)求。(2)求函数在2处的导数。小结:理解导数的概念并会运用概念求导数。练习与作业:1.求下列函数的导数:(1);(2)(3) (3)2.求函数在1,0,1处导数。3.求下列函数在指定点处的导数:(1);(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中图版地理七年级上册1.1地球和地球仪 说课稿
- 美军兵役合同
- Unit 3 Could you please clean your room SectionA 1a-2d 说课稿 2023-2024学年人教版八年级英语下册
- 门头租房合同
- 中班语言牵牛花说课稿教案反思(2025-2026学年)
- 2024-2025学年高中生物 第三章 生物群落的演替 3.1 生物群落的基本单位-种群说课稿 苏教版必修3
- 2025版合同提前解除与终止服务协议书
- 2025企业合作协议,合作伙伴合同范本
- 综合探究六 郑和下西洋与哥伦布航海说课稿-2025-2026学年初中历史与社会(人文地理)八年级下册人教版(新课程标准)
- 陕西省周至县高中数学 第一章 统计 1.5 用样本估计总体说课稿3 北师大版必修3
- 2025年肺结核患者健康管理培训试题及答案(课前)
- 江苏2025年江苏省高校招生就业指导服务中心招聘博士笔试历年参考题库附带答案详解
- 2024-2025学年陕西省西安市碑林区部分学校北师大版四年级上册期中测试数学试卷(含答案)
- 2025年及未来5年中国电梯维保行业市场前景预测及投资战略研究报告
- 2025贵州遵义市鑫财投资有限公司招聘工作人员17人考试模拟试题及答案解析
- 2026届海口市重点中学九年级数学第一学期期末达标测试试题含解析
- 胰岛素注射规范与操作指南
- 轨行区施工安全培训课件
- 基于边缘计算的导航算法优化-洞察及研究
- 实施指南(2025)《DA-T 59 - 2017 口述史料采集与管理规范》
- 生成式人工智能培训
评论
0/150
提交评论