



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课 题:2.5.1 指数-根式教学目的:1掌握根式的概念和性质,并能熟练应用于相关计算中2培养培养观察分析、抽象概括能力、归纳总结能力、化归转化能力;教学重点:根式的概念性质教学难点:根式的概念授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教材分析:指数函数是基本初等函数之一,应用非常广泛它是在本章学习完函数概念和两个基本性质之后较为系统地研究的第一个初等函数为了学习指数函数应该将初中学过的指数概念进行扩展,初中代数中学习了正整数指数、零指数和负整数指数的概念和运算性质本节在此基础上学习的运算性质为下一节学习分数指数幂概念和性质做准备教学过程:一、复习引入:1整数指数幂的概念 2运算性质: 3注意 可看作 = 可看作 =二、讲解新课: 1根式:计算(可用计算器)= 9 ,则3是9的平方根 ;=125 ,则5是125的立方根 ;若=1296 ,则6是1296 的 4次方根 ;=693.43957 ,则3.7是693.43957的5次方根 .定义:一般地,若 则x叫做a的n次方根叫做根式,n叫做根指数,a叫做被开方数例如,27的3次方根表示为,-32的5次方根表示为,的3次方根表示为;16的4次方根表示为!,即16的4次方根有两个,一个是,另一个是-,它们绝对值相等而符号相反.性质:当n为奇数时:正数的n次方根为正数,负数的n次方根为负数记作: 当n为偶数时,正数的n次方根有两个(互为相反数)记作: 负数没有偶次方根, 0的任何次方根为0注:当a0时,0,表示算术根,所以类似=2的写法是错误的.常用公式根据n次方根的定义,易得到以下三组常用公式:当n为任意正整数时,()=a.例如,()=27,()=-32.当n为奇数时,=a;当n为偶数时,=|a|=.例如,=-2,=2;=3,=|-3|=3.根式的基本性质:,(a0).注意,中的a0十分重要,无此条件则公式不成立. 例如.用语言叙述上面三个公式:非负实数a的n次方根的n次幂是它本身. n为奇数时,实数a的n次幂的n次方根是a本身;n为偶数时,实数a的n次幂的n次方根是a的绝对值.若一个根式(算术根)的被开方数是一个非负实数的幂,那么这个根式的根指数和被开方数的指数都乘以或者除以同一个正整数,根式的值不变.三、讲解例题:例1(课本第71页 例1)求值= -8 ;= |-10| = 10 ;= | = ;= |a- b| = a- b .去掉ab结果如何?例2求值:分析:(1)题需把各项被开方数变为完全平方形式,然后再利用根式运算性质;解:四、练习:五、小结 本节课学习了以下内容:1根式的概念;2根式的运算性质:当n为任意正整数时,()=a.当n为奇数时,=a;当n为偶数时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 品牌与价格关联性-洞察及研究
- 部队交通安全培训内容课件
- 河南省南阳市镇平县2024-2025学年八年级下学期3月月考生物学试题(含答案)
- 20xx建设承诺书4篇
- 【2025年秋七上语文阶段测试】第3单元学业质量评价01(解析版)
- 山东省2025年普通高校招生网上报名信息表
- 车险销售原理课件
- 基于区块链的分离式墨盒供应链溯源系统构建瓶颈
- 城市更新浪潮中商务综合体功能迭代与社区服务融合的设施适配性
- 国际奢侈品赛道中东方纹样溢价权争夺的定价权困局
- 社区街道网格员安全培训
- 反诈知识竞赛题库及答案(共286题)
- 村卫生室医疗废物管理制度
- GB/T 44698-2024电动踝关节
- 生理学基础题库(46道)
- 月度财务分析报告(3篇)
- 华文版六年级上册书法教案
- 物流消防应急预案
- (人教版2024)八年级语文上册全册各课导学案(含答案)
- 2024-2030年中国汽车焊装设备行业竞争格局及未来前景预测报告
- 城镇污泥标准检验方法CJT221-2023 知识培训
评论
0/150
提交评论