




免费预览已结束,剩余3页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
幂函数中的三类讨论题在幂函数中,分类讨论的思想得到了重要的体现,下面我们将一起来学习幂函数中的三类讨论题类型一:求参数的取值范围例1已知函数(mZ)为偶函数,且f(3)f(5),求m的值,并确定f(x)的解析式分析:函数(mZ)为偶函数,已限定了必为偶数,又mZ,f(3)f(5),只要根据条件分类讨论便可求得m的值,从而确定f(x)的解析式解:f(x)是偶函数,应为偶数又f(3)f(5),即,整理,得,解得又mZ,m=0或1当m=0时,为奇数(舍去);当m=1时,为偶数故m的值为,类型二:求解存在性问题 例2已知函数,设函数,问是否存在实数q(q0),使得g(x)在区间(,4上是减函数,且在区间(4,0)上是增函数?若存在,请求出来;若不存在,请说明理由分析:判断函数的单调性时,可以利用定义,也可结合函数的图象与性质进行判断,但要注意问题中符号的确定,要依赖于自变量的取值区间解:,则假设存在实数q(q例2函数是幂函数,比较与的大小解析:是幂函数,解得函数在(0,)上是增函数,且ab0,二、转化法当幂指数不同时可先转化为相同幂指数,再运用单调性比较大小例比较的大小解析:,幂函数在(,)上单调递减,且0.71.21,三、中间值法当底数不同且幂指数也不同,不能运用单调性比较大小时,可选取适当的中间值与比较大小的两数分别比较,从而达到比较大小的目的 例比较0.8与0.9的大小解析:由于这两个数的底数不同,指数也不同,所以可利用中间值来间接比较它们的大小注意到这两个数的特点,中间值应选0.9或0.80,幂函数在(,)上是增函数又0.80.9,0.80.9又00.91,指数函数在(0,)上是减函数,且,0.90.9综上可得0.80.9四、模型函数法若函数满足性质:等,则可以认为其模型函数为幂函数对于此类抽象函数的大小比较问题,我们常通过寻找、发现基本原型函数来求解例已知函数满足,且f(8)=4,则_(填“、=、”)解析:的原型函数是(为常数),又f(8)=4,于是,显然该函数是偶函数,且在区间(,)上是增函数,在(,)上是减函数,幂函数解析式的求法对某些幂函数问题来说,能否顺利解答,往往取决于是不是能够求出其解析式本文就常见的幂函数解析式的求法归类例析如下:一、利用幂函数的定义 例已知函数是幂函数,求此函数的解析式解:是幂函数,y可以写成如下形式(是常数),解得当时,有(2为常数),(1为常数)函数的解析式为或评注:幂函数(x为自变量,是常数)的定义强调:系数为,幂指数为常数.求出参数m后要注意检验幂指数是否为常数 二、利用幂函数的图象例若函数是幂函数,且图象不经过原点,求函数的解析式分析:对于幂函数(是常数)而言,要使幂函数的图象不过原点,则指数0解:函数是幂函数,且图象不经过原点,且或6函数解析式为或例已知幂函数(mZ)的图象与x轴、y轴都无交点,且关于原点对称求函数的解析式解:函数的图象与x轴、y轴都无交点,解得又图象关于原点对称,且mZ,m0评注:解决与幂函数有关的综合问题时,应抓住突破口,此两例的突破口是图象的特征,只要抓住图象特征,将其转化为代数语言,就能顺利解题三、利用幂函数的性质例已知幂函数()是偶函数,且在(0,+)上为增函数,求函数的解析式解:是幂函数,解得t1,t0或t1,当t时,是非奇非偶函数,不满足条件当t1时,是偶函数,但在(0,+)上为减函数,不满足条件当时,满足题设综上所述,实数t的值为1,所求解析式为评注:涉及求与幂函数有关的参数问题,掌握幂函数的概念和性质是解题的关键解含参问题有时还应注意分类讨论幂的十位数 “求一个自然数的高次幂的个位数,应该说是不难的”,布鲁斯博士接着说,“比方说求20022002的个位数顺便说一下,如果有哪位孩子说他准备用计算机把这个幂算出来,然后看一下个位数是什么,那我只能对他表示敬意但我在这里说的不是算出来,而是求出来那位举手的孩子,你想问什么?”“我想知道算与求有什么区别?”一个胖嘟嘟的男孩站起来问道“很好,等我把20022002的个位数求出来以后,你就明白了好,我们继续”博士在投影仪上放了一张胶片,他身后的墙上映出了一张巨大的表格:123456789248624862“一个自然数,若它的个位数是2,那么它的1次幂的个位数仍然为2,它的2次幂的个位数为4,3次幂的个位数为8,4次幂的个位数为6,5次幂的个位数又为2了”博士说道,“这张表格的第一行是幂的次数,第二行就是相应次数的幂的个位数我们看到了什么?我们看到这些个位数以2,4,8,6为基本模块不断地循环,其循环周期为4由此我们知道,20022与20024n+2的个位数都是4令n=500,即可知20022002的个位数为”布鲁斯博士用得意的眼光扫过全场,一阵热烈的掌声随即响起“那么幂的十位数,比方说,19978,19989,19991073的十位数,该怎样求呢?”胖男孩又站起来问道,他有意重读了那个“求”字“唔,唔,这个问题有点儿麻烦”博士的额头出现了一些汗珠,“让我们来试试看”博士绞尽脑汁,使出浑身解数,想“求”出这三个幂的十位数你能帮他“求”出这三个幂的十位数吗?提示:注意1997,1998,1999都是离2000很近的数幂函数图象 要了解和掌握幂函数(为常数)性质,可结合幂函数的图象,而幂函数的图象,只要看其第一象限内的函数图象即可这是因为:任何幂函数在第一象限必有图象,第四象限必无图象如果幂函数是奇函数,在第三象限内有其中心(坐标原点)对称部分;如果幂函数是偶函数,在第二象限内有其轴(y轴)对称部分;如果幂函数是非奇非偶函数,则其函数图象只在第一象限内那么如何来看幂函数(为常数)在第一象限内的函数图象呢?下面结合下图加以分析:1幂函数(为常数)的图象均过定点(1,1)(我们称其为“束点”),即所有幂函数的图象都经过束点2两条相交于束点的直线(y0)和y=1(x0)把第一象限分成四个区域:左上区、左下区、右上区、右下区那么,幂函数的图象的所属区域由幂指数确定:()当0时,幂函数的图象在左下右上区;此时函数图象呈上升趋势,在第一象限内为增函数;()当0时,幂函数的图象在左上右下区;此时函数图象呈下降趋势,在第一象限内为减函数;()当=0时,幂函数的图象为直线y=1(x0);此时函数图象为上下区域的分界线,与x轴平行 3当0时,幂函数的图象除过束点(,)外,还过定点(,)(即坐标原点)此时除时幂函数的图象为直线外,其他情况下所对应的幂函数的图象都属于“抛物线型”图象:()当1时,幂函数的图象呈下凸形状,与x轴相切;()当01时,幂函数的图象呈上凸形状,与y轴相切4当0时,幂函数的图象只过束点(,),不过定点(,)此时所对应的幂函数的图象属于“双曲线型”图象,即前面所熟悉的反比例函数类型:向左上、右下分别逼近于两坐标轴,并无限接近5幂函数的图象与幂指数大小变化的关系:在右区(直线x=1的右边),不同的幂函数的图象随幂指数的增加而变高;那么对应的,在左区(直线x=1的左边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司数控组合机床操作工效率提升考核试卷及答案
- 公司固体化妆品制造工三级安全教育(班组级)考核试卷及答案
- 2025安徽安庆医药高等专科学校面向校园招聘21人考前自测高频考点模拟试题含答案详解
- 公司仪器仪表装调工6S现场管理考核试卷及答案
- 公司妇幼保健员异常处理考核试卷及答案
- 林下经济项目投资与风险评估方案
- 公司化工蒸馏工工作交接完整性考核试卷及答案
- 大乌龟回家课件
- 建筑节能施工技术方案
- 高层厂房建设的结构设计与施工技巧
- 浙江省浙南名校联盟2025-2026学年高三上学期10月联考化学试题
- 2025广西送变电建设有限责任公司第二批项目制用工招聘89人备考考试题库附答案解析
- DB11T 2441-2025 学校食堂清洁和消毒规范
- 蚊媒传染病的预防与控制
- 经济统计学课件
- 马工程经济法学教学
- “情景教学法”是小学英语教学的最有效方法
- 特种设备生产和使用单位日、周、月管理制度及填写表格(模板)
- 工程伦理-核工程的伦理问题
- 压矿资源调查报告
- 公司葡萄图模板
评论
0/150
提交评论