




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2018年浙江省中考数学圆试题解析我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题分析问题解决问题,但真正动起笔来就犯难了。知道“是这样”,就是讲不出“为什么”。根本原因还是无“米”下“锅”。于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。 以下是查字典数学网为您推荐的 2018年浙江省中考数学圆试题解析,希望本篇文章对您学习有所帮助。观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀样,给大树开刀治病。通过联想,幼儿能够生动形象地描述观察对象。 2018年浙江省中考数学圆试题解析教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。 1. (2018浙江杭州3分)若两圆的半径分别为2cm和6cm,圆心距为4cm,则这两圆的位置关系是【 】A.内含B.内切C.外切D.外离【答案】B。【考点】圆与圆的位置关系。【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。因此,两圆的半径分别为2cm和6cm,圆心距为4cm.则d=62=4。两圆内切。故选B。2.(2018浙江湖州3分)如图,ABC是O的内接三角形,AC是O的直径,C=50,ABC的平分线BD交O于点D,则BAD的度数是【 】A.45 B.85 C.90 D.95【答案】B。【考点】圆周角定理,直角三角形两锐角的关系圆心角、弧、弦的关系。【分析】AC是O的直径,ABC=90。C=50,BAC=40。ABC的平分线BD交O于点D,ABD=DBC=45。CAD=DBC=45。BAD=BAC+CAD=40+45=85。故选B。3. (2018浙江嘉兴、舟山4分)如图,AB是O的弦,BC与O相切于点B,连接OA、OB.若ABC=70,则A等于【 】A. 15 B. 20 C. 30 D. 70【答案】B。【考点】切线的性质,等腰三角形的性质。【分析】BC与O相切于点B,OBBC。OBC=90。ABC=70,OBA=OBCABC=9070=20。OA=OB,OBA=20。故选B。4. (2018浙江嘉兴、舟山4分)已知一个圆锥的底面半径为3cm,母线长为10cm,则这个圆锥的侧面积为()A. 15cm2 B. 30cm2 C. 60cm2 D. 3 cm2【答案】B。【考点】圆锥的计算。【分析】直接根据圆锥的侧面积计算即可:这个圆锥的侧面积= cm2。故选B。5. (2018浙江宁波3分)如图,用邻边分别为a,b(aA.b= aB.b= C.b= D.b=【答案】D。【考点】圆锥的计算。【分析】半圆的直径为a,半圆的弧长为 。把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,设小圆的半径为r,则: ,解得:如图小圆的圆心为B,半圆的圆心为C,作BACA于A点,则由勾股定理,得:AC2+AB2=BC2,即: ,整理得:b= 。故选D。6. (2018浙江衢州3分)如图,点A、B、C在O上,ACB=30,则sinAOB的值是【 】A. B. C. D.【答案】C。【考点】圆周角定理,特殊角的三角函数值。【分析】由点A、B、C在O上,ACB=30,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得AOB=2ACB=60,然后由特殊角的三角函数值得:sinAOB=sin60= 。故选C。7. (2018浙江衢州3分)用圆心角为120,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是【 】A. cmB.3 cmC.4 cmD.4cm【答案】C。【考点】圆锥的计算,扇形的弧长,勾股定理。【分析】利用扇形的弧长公式可得扇形的弧长;根据扇形的弧长=圆锥的底面周长,让扇形的弧长除以2即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高:扇形的弧长= cm,圆锥的底面半径为42=2cm,这个圆锥形筒的高为 cm。故选C。8. (2018浙江绍兴4分)如图,AD为O的直径,作O的内接正三角形ABC,甲、乙两人的作法分别是:甲:1、作OD的中垂线,交O于B,C两点,2、连接AB,AC,ABC即为所求的三角形乙:1、以D为圆心,OD长为半径作圆弧,交O于B,C两点。2、连接AB,BC,CA.ABC即为所求的三角形。对于甲、乙两人的作法,可判断【 】A. 甲、乙均正确 B. 甲、乙均错误 C.甲正确、乙错误 D.甲错误,乙正确【答案】A。【考点】垂径定理,等边三角形的判定和性质,等腰三角形的性质,三角形外角性质,含30度角的直角三角形。【分析】根据甲的思路,作出图形如下:连接OB,BC垂直平分OD,E为OD的中点,且ODBC。OE=DE= OD。又OB=OD,在RtOBE中,OE= OB。OBE=30。又OEB=90,BOE=60。OA=OB,OAB=OBA。又BOE为AOB的外角,OAB=OBA=30,ABC=ABO+OBE=60。同理C=60。BAC=60。ABC=BAC=C=60。ABC为等边三角形。故甲作法正确。根据乙的思路,作图如下:连接OB,BD。OD=BD,OD=OB,OD=BD=OB。BOD为等边三角形。OBD=BOD=60。又BC垂直平分OD,OM=DM。BM为OBD的平分线。OBM=DBM=30。又OA=OB,且BOD为AOB的外角,BAO=ABO=30。ABC=ABO+OBM=60。同理ACB=60。BAC=60。ABC=ACB=BAC。ABC为等边三角形。故乙作法正确。故选A。9. (2018浙江绍兴4分)如图,扇形DOE的半径为3,边长为 的菱形OABC的顶点A,C,B分别在OD,OE, 上,若把扇形DOE围成一个圆锥,则此圆锥的高为【 】A. B. C. D.【答案】 D。【考点】圆锥的计算,菱形的性质。【分析】连接OB,AC,BO与AC相交于点F。在菱形OABC中,ACBO,CF=AF,FO=BF,COB=BOA,又扇形DOE的半径为3,边长为 ,FO=BF=1.5。cosFOC= 。FOC=30。EOD=230=60。 。底面圆的周长为:2,解得:r= 。圆锥母线为:3,此圆锥的高为: 。故选D。10. (2018浙江台州4分)如图,点A、B、C是O上三点,AOC=130,则ABC等于【 】A. 50 B.60 C.65 D.70【答案】C。【考点】圆周角定理。【分析】根据同弧所对圆周角是圆心角一半的性质,得ABC= AOC=65。故选C。11. (2018浙江温州4分)已知O1与O2外切,O1O2=8cm,O1的半径为5cm,则O2的半径是【 】A. 13cm. B. 8cm C. 6cm D. 3cm【答案】D。【考点】圆与圆的位置关系。【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。因此,根据两圆外切,圆心距等于两圆半径之和,得该圆的半径是8-5=3(cm)。故选D。二、填空题1. (2018浙江嘉兴、舟山5分)如图,在O中,直径AB丄弦CD于点M,AM=18,BM=8,则CD的长为 .【答案】24。【考点】垂径定理,勾股定理。【分析】连接OC,AM=18,BM=8,AB=26,OC=OB=13。OM=138=5。在RtOCM中, 。直径AB丄弦CD,CD=2CM=212=24。2. (2018浙江丽水、金华4分)半径分别为3cm和4cm的两圆内切,这两圆的圆心距为 cm.【答案】1。【考点】圆与圆的位置关系。【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。因此,两个圆内切,且其半径分别为3cm和4cm,两个圆的圆心距为4-3=1(cm)。3. (2018浙江宁波3分)如图,ABC中,BAC=60,ABC=45,AB=2 ,D是线段BC上的一个动点,以AD为直径画O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为 .【答案】 。【考点】垂线段的性质,垂径定理,圆周角定理,解直角三角形,锐角三角函数定义,特殊角的三角函数值。【分析】由垂线段的性质可知,当AD为ABC的边BC上的高时,直径AD最短,此时线段EF=2EH=20EsinEOH=20Esin60,当半径OE最短时,EF最短。如图,连接OE,OF,过O点作OHEF,垂足为H。在RtADB中,ABC=45,AB=2 ,AD=BD=2,即此时圆的直径为2。由圆周角定理可知EOH= EOF=BAC=60,在RtEOH中,EH=OEsinEOH=1 。由垂径定理可知EF=2EH= 。4. (2018浙江衢州4分)工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为 mm.【答案】8。【考点】垂径定理的应用,勾股定理。【分析】连接OA,过点O作ODAB于点D,则AB=2AD,钢珠的直径是10mm,钢珠的半径是5mm。钢珠顶端离零件表面的距离为8mm,OD=3mm。在RtAOD中, mm,AB=2AD=24=8mm。5. (2018浙江台州5分)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16厘米,则球的半径为 厘米.【答案】10。【考点】垂径定理,勾股定理,矩形的性质,解方程组。【分析】如图,过球心O作IGBC,分别交BC、AD、劣弧 于点G、H、I,连接OF。设OH=x,HI=y,则依题意,根据垂径定理、勾股定理和矩形的性质,得 ,解得 。球的半径为x+y=10(厘米)。三、解答题1. (2018浙江杭州12分)如图,AE切O于点E,AT交O于点M,N,线段OE交AT于点C,OBAT于点B,已知EAT=30,AE=3 ,MN=2 .(1)求COB的度数;(2)求O的半径R;(3)点F在O上( 是劣弧),且EF=5,把OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与OBC的周长之比.【答案】解:(1)AE切O于点E,AECE。又OBAT,AEC=CBO=90,又BCO=ACE,AECOBC。又A=30,COB=A=30。(2)AE=3 ,A=30,在RtAEC中,tanA=tan30= ,即EC=AEtan30=3。OBMN,B为MN的中点。又MN=2 ,MB= MN= 。连接OM,在MOB中,OM=R,MB= ,在COB中,BOC=30,cosBOC=cos30= ,BO= OC。又OC+EC=OM=R,整理得:R2+18R115=0,即(R+23)(R5)=0,解得:R=23(舍去)或R=5。R=5。(3)在EF同一侧,COB经过平移、旋转和相似变换后,这样的三角形有6个,如图,每小图2个,顶点在圆上的三角形,如图所示:延长EO交圆O于点D,连接DF,如图所示,FDE即为所求。EF=5,直径ED=10,可得出FDE=30,FD=5 。则CEFD=5+10+5 =15+5 ,由(2)可得CCOB=3+ ,CEFD:CCOB=(15+5 ):(3+ )=5:1。【考点】切线的性质,含30度角的直角三角形的性质,锐角三角函数定义,勾股定理,垂径定理,平移、旋转的性质,相似三角形的判定和性质。【分析】(1)由AE与圆O相切,根据切线的性质得到AECE,又OBAT,可得出两直角相等,再由一对对顶角相等,利用两对对应角相等的两三角形相似可得出AECOBC,根据相似三角形的对应角相等可得出所求的角与A相等,由A的度数即可求出所求角的度数。(2)在RtAEC中,由AE及tanA的值,利用锐角三角函数定义求出CE的长,再由OBMN,根据垂径定理得到B为MN的中点,根据MN的长求出MB的长,在RtOBM中,由半径OM=R,及MB的长,利用勾股定理表示出OB的长,在RtOBC中,由表示出OB及cos30的值,利用锐角三角函数定义表示出OC,用OEOC=EC列出关于R的方程,求出方程的解得到半径R的值。(3)把OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有6个。顶点在圆上的三角形,延长EO与圆交于点D,连接DF,FDE即为所求。根据ED为直径,利用直径所对的圆周角为直角,得到FDE为直角三角形,由FDE为30,利用锐角三角函数定义求出DF的长,表示出EFD的周长,再由(2)求出的OBC的三边表示出BOC的周长,即可求出两三角形的周长之比。2. (2018浙江湖州10分)已知,如图,在梯形ABCD中,ADBC,DA=DC,以点D为圆心,DA长为半径的D与AB相切于A,与BC交于点F,过点D作DEBC,垂足为E.(1)求证:四边形ABED为矩形;(2)若AB=4, ,求CF的长.【答案】(1)证明:D与AB相切于点A,ABAD。ADBC,DEBC,DEAD。DAB=ADE=DEB=90。四边形ABED为矩形。 (2)解:四边形ABED为矩形,DE=AB=4。DC=DA,点C在D上。D为圆心,DEBC,CF=2EC。 ,设AD=3k(k0)则BC=4k。BE=3k,EC=BC-BE=4k-3k=k,DC=AD=3k。由勾股定理得DE2+EC2=DC2,即42+k2=(3k)2,k2=2。k0,k= 。CF=2EC=2 。【考点】切线的性质,矩形的判定和性质,勾股定理,待定系数法,垂径定理。【分析】(1)根据ADBC和AB切圆D于A,求出DAB=ADE=DEB=90,即可推出结论。(2)根据矩形的性质求出AD=BE=AB=DE=4,根据垂径定理求出CF=2CE,设AD=3k,则BC=4k,BE=3k,EC=k,DC=AD=3k,在DEC中由勾股定理得出一个关于k的方程,求出k的值,即可求出答案。3. (2018浙江丽水、金华8分)如图,AB为O的直径,EF切O于点D,过点B作BHEF于点H,交O于点C,连接BD.(1)求证:BD平分(2)如果AB=12,BC=8,求圆心O到BC的距离.【答案】(1)证明:连接OD,EF是O的切线,ODEF。,又BHEF,ODBH。ODB=DBH。OD=OB,ODB=OBD。OBD=DBH。BD平分ABH。.(2)解:过点O作OGBC于点G,则BG=CG=4。在RtOBG中, .【考点】切线的性质,平行的判定和性质,等腰三角形的性质,垂径定理,勾股定理。【分析】(1)连接OD,根据切线的性质以及BHEF,即可证得ODBC,然后根据等边对等角即可证得;(2)过点O作OGBC于点G,则利用垂径定理即可求得BG的长,然后在RtOBG中利用勾股定理即可求解。4. (2018浙江宁波8分)如图,在ABC中,BE是它的角平分线,C=90,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F.(1)求证:AC是O的切线;(2)已知sinA= ,O的半径为4,求图中阴影部分的面积.【答案】解:(1)连接OE。OB=OE,OBE=OEB。BE是ABC的角平分线,OBE=EBC。OEB=EBC。OEBC 。C=90,AEO=C=90 。AC是O的切线。(2)连接OF。sinA= ,A=30 。O的半径为4,AO=2OE=8。AE=4 ,AOE=60,AB=12。BC= AB=6,AC=6 。CE=ACAE=2 。OB=OF,ABC=60,OBF是正三角形。FOB=60,CF=64=2。EOF=60。S梯形OECF= (2+4)2 =6 , S扇形EOF= 。S阴影部分=S梯形OECFS扇形EOF=6 。【考点】切线的判定,等腰三角形的性质,平行的判定和性质,特殊角的三角函数值,扇形面积的计算。【分析】(1)连接OE.根据OB=OE得到OBE=OEB,然后再根据BE是ABC的角平分线得到OEB=EBC,从而判定OEBC,最后根据C=90得到AEO=C=90证得结论AC是O的切线。(2)连接OF,利用S阴影部分=S梯形OECF-S扇形EOF求解即可。4. (2018浙江衢州8分)如图,在RtABC中,C=90,ABC的平分线交AC于点D,点O是AB上一点,O过B、D两点,且分别交AB、BC于点E、F.(1)求证:AC是O的切线;(2)已知AB=10,BC=6,求O的半径r.【答案】(1)证明:连接OD。OB=OD,OBD=ODB。BD平分ABC,ABD=DBCODB=DBC。ODBC。又C=90,ADO=90。ACOD,即AC是O的切线。(2)解:由(1)知,ODBC,AODABC。,即 。解得 ,即O的半径r为 。【考点】切线的判定,等腰三角形的性质,平行的判定和性质,相似三角形的判定和性质。【分析】(1)连接OD.欲证AC是O的切线,只需证明ACOD即可。(2)利用平行线知AODABC,即 ;然后将图中线段间的和差关系代入该比例式,通过解方程即可求得r的值,即O的半径r的值。5. (2018浙江温州10分)如图,ABC中,ACB=90,D是边AB上的一点,且A=2DCB.E是BC上的一点,以EC为直径的O经过点D。(1)求证:AB是O的切线;(2)若CD的弦心距为1,BE=EO.求BD的长.【答案】(1)证明:如图,连接OD,OD=OC,DCB=ODC。又DOB和DCB为弧 所对的圆心角和圆周角,DOB =2DCB。又A=2DCB,DOB。ACB=90,B=90。DOB+B=90。BDO=90。ODAB。AB是O的切线。(2)如图,过点O作OMCD于点M,OD=OE=BE= BO,BDO=90,B=30。DOB=60。OD=OC,DCB=ODC。又DOB和DCB为弧 所对的圆心角和圆周角,DOB =2DCB。DCB=30。在RtOCM中,DCB=30,OM=1,OC=2OM=2。OD=2,BO=BE+OE=2OE=4。在RtBDO中,根据勾股定理得: 。【考点】切线的判定,等腰三角形的性质,含30度角的直角三角形的性质,垂径定理,圆周角定理,勾股定理,三角形内角和定理。【分析】(1)连接OD,由OD=OC,根据等边对等角得到一对角相等,再由同弧所对圆周角是圆心角一半的性质,可得出DOB=2DCB。又A=2DCB,可得出DOB,又ACB=90,可得出直角三角形ABC中两锐角互余,等量代换可得出B与ODB互余,即OD垂直于BD,确定出AB为圆O的切线。(2)过O作OM垂直于CD,根据垂径定理得到M为DC的中点,由BD垂直于OD,得到三角形BDO为直角三角形,再由BE=OE=OD,得到OD等于OB的一半,可得出B=30,从而确定出DOB=60,又OD=OC,利用等边对等角得到一对角相等,再由同弧所对圆周角是圆心角一半的性质,可得出DOB=2DCB。可得出DCB=30,在三角形CMO中,根据30角所对的直角边等于斜边的一半得到OC=2OM,由弦心距OM的长求出OC的长,从而确定出OD及OB的长,利用勾股定理即可求出BD的长。本题另解:如图,过O作OM垂直于CD,连接ED,由垂径定理得到M为CD的中点,又O为EC的中点,得到OM为三角形EDC的中位线,利用三角形中位线定理得到OM等于ED的一半,由弦心距OM的长求出ED的长,再由BE=OE,得到ED为直角三角形DBO斜边上的中线,利用直角三角形斜
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中药购销实训室管理制度
- 施工企业廉政管理制度
- 助爱归巢计划书管理制度
- shuru药品管理制度
- 乡村文体俱乐部管理制度
- 公司商务部部门管理制度
- 城乡住户辅调员管理制度
- 变压器基本设备管理制度
- 旅游景区应急管理制度
- 分公司印章执照管理制度
- 【山东】国际足球运动小镇概念规划方案
- 海氏(hay)职位分析法-介绍、实践与评价合集课件
- 煤矿安全规程露天部分参考题库(含答案)
- 有趣的英汉互译-课件
- (参考)菲达公司国内电除尘器业绩表
- 步进式加热炉耐材砌筑施工方案
- GB-T12232-2005- 通用阀门 法兰连接铁制闸阀
- 大学生职业生涯规划与就业指导教案第5讲:兴趣探索
- 2022年中国电信店长技能四级认证教材
- 门店电表记录表
- 常见散料堆积密度汇总-共10
评论
0/150
提交评论