



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.4.2平面向量数量积的坐标表示、模、夹角一、教学目标1.知识与技能:掌握平面向量的数量积坐标运算及应用2.过程与方法:(1)通过平面向量数量积的坐标运算,体会向量的代数性和几何性;(2)从具体应用体会向量数量积的作用 3.情感、态度与价值观:学会对待不同问题用不同的方法分析的态度二、教学重点、难点重点:向量垂直的坐标表示的充要条件,及向量的长度、距离和夹角公式难点:条件和公式的应用三、教学方法用学过的知识带动学生探求新知识四、教学过程教学环节教学内容师生互动设计意图复习引入平面向量基本定理及向量的坐标表示向量数量积的定义及性质、运算率学生思考回答上节课内容温故知新定义形成向量具有几何性和代数性,上节课根据向量的几何性定义出了数量积的运算,并掌握了运算率及性质。那么这一定义如何由它的代数性反映出来? 那么向量数量积的性质如何由它的坐标表示出来?结论:已知两个非零向量,则从中总结出三个公式(向量的长度、距离、夹角公式)及一个条件(向量垂直的充要条件)向量的长度、距离和夹角公式(1)设,则或(长度公式)(2)如果表示向量的有向线段的起点和终点的坐标分别为、,那么(距离公式)(3) cosq =()(夹角公式)向量垂直的充要条件设,则教师引导学生,从向量的坐标出发,根据数量积的定义推导出数量积的坐标运算 。从而很容易推导出三个公式和一个条件让学生自己联系旧知识推导新内容,体会自己创作的乐趣定义深化对于从前的射影的概念,我们进行重新的认识向量在轴上的正射影:作图 定义:|cosq叫做向量在所在轴上的正射影正射影也是一个数量,不是向量;当q为锐角时正射影为正值;当q为钝角时正射影为负值;当q为直角时正射影为0;当q = 0时正射影为|;当q = 180时正射影为-|挖掘向量在轴上的正射影的定义,和我们这两节的向量数量积有什么关系?(或找出其本质)练习:P108 例1学生主导发现问题,教师引导提出和解决问题注意:射影是可正可负可为零的教学中,学生不太容易理解的,也不经常用到的概念,变作例题形式有利于加深印象应用举例例1.已知=(3,-1),=(1,-2),求,|,|,例2.求证菱形的两条对角线互相垂直.练习.已知点A(1,2),B(2,3),C(-2,5),求证例3.已知点A(1,2),B(3,4),C(5,0),求的正弦值练习.已知=(3,4),求:(1)的单位向量;(2)与垂直的单位向量;(3)与平行的单位向量主要体会向量代数运算的方便和简便,以及几何性质的直观熟练准确的运用向量数量积进行运算,并对某些结论性的内容有所了解课堂小结 1.数量积的定义、性质、运算率 2.几种特殊情况的讨论(注意事项)教师提出问题:向量的运算已经接触到了加法、减法、数乘及数量积的运算,那么它们的区别和联系是什么?尤其是数乘和数量积的运算,同是乘法,有何区别?主要学生总结,教师不做过多引导让学生掌握最主要的内容;让大多数学生知道还有某些注意事项作业1、看书总结平面向量数量积的注意事项(分别从定义、运算率、性质、与数乘的区别总结)2、总结一些你认为很有用的式子(可以从例题、习题总结)3、P115练习B-2(1)(2)、3 练习A-1(1)(2) 习题A-2 习题B-4注意:1、找向量夹角时,向量必须同起点;2、定义中注意垂直时数量积为0;3、两个向量的数量积称为内积,写成ab;符号“ ”在向量运算中既不能省略,也不能用“”4、数量积不满足结合率和消去率:在实数中,若a0,且ab=0,则b=0;但是在数量积中,若a0,且ab=0,不能推出b=0因为其中cosq有可能为0已知实数a、b、c(b0),则ab=bc a=c但是ab = bc
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 箱包烫画细节修正工艺步骤工艺考核试卷及答案
- 2025年焊工考试全真模拟模拟题及参考答案详解
- 2025年国有投资法试题及答案
- 纺织带涂层耐应力耐候工艺考核试卷及答案
- 特殊饮食知识培训课件
- 废水处理药剂技术革新工艺考核试卷及答案
- 从零开始学ERP实战训练课程:掌握企业运营与管理优化的秘籍全攻略
- 银行服务竞赛试题及答案
- 中药调剂员上岗考核试卷及答案
- 电声器件制造工5S管理考核试卷及答案
- 2025年中式烹调师(技师)理论考试笔试试题(150题)含答案
- 宁德时代shl测评题库
- 微信小程序申请模板-电商平台对用户交易纠纷处理的机制或方案
- 冷库、冷藏车故障应急预案管理程序
- 冠心病危险因素管理
- 高速安全知识
- 2024年10月成都市金牛区人民政府西华街道办事处公开招考1名编外人员笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 妇产科 女性生殖系统生理学习课件
- 玛丽艳美容培训
- 2025年四川华丰科技股份有限公司招聘笔试参考题库含答案解析
- 《物业管理培训课件:业主满意度提升策略》
评论
0/150
提交评论