已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Derivation of 3D Euler and Navier-Stokes Equationsin Cylindrical CoordinatesContents1. Derivation of 3D Euler Equation in Cylindrical coordinates2. Derivation of Euler Equation in Cylindrical coordinates moving at in tangential direction3. Derivation of 3D Navier-Stokes Equation in Cylindrical Coordinates1. Derivation of 3D Euler Equation in Cylindrical coordinatesEuler Equation in Cartesian coordinates (1.1)Where Conservative flow variables Inviscid/convective flux in x direction Inviscid/convective flux in y direction inviscid/convective flux in z directionAnd their specific definitions are as follows, Total enthalpySome relationshipWe want to perform the following coordinates transformationBecauseAccording to Cramers ruler, we have (1.2.1) (1.2.2)WhereSimilar to the above (1.2.3) (1.2.4)In addition, the following relations hold between cylindrical coordinate and Cartesian coordinate, (1.3) (1.4.1) (1.4.2)DerivationMultiplying the both side of equation (1.1) by and applying equalities (1.4.1) and (1.4.2) gives, (1.5)Differentiating the following w.r.t. time gives, (1.6.1) (1.6.2)Expanding the term and applying the relationships (1.6) yields, (1.7.1)Expanding the term and applying the relationships (1.6) yields, (1.7.2)Substituting relationships (1.7) into equation (1.5) and rearranging gives,(1.8)As we can see from expressions (1.7), the momentum equations in radial and tangential directions contain velocities in Cartesian coordinate; we need to replace them with corresponding variables in cylindrical coordinate. Writing down the momentum equations in radial and tangential directions as follows, (1.9.1) (1.9.2)Multiplying (1.9.1) by and (1.9.2) by, then summing up and applying expressions (1.6) and rearranging yields (1.10.1)Multiplying (a) by and (b) by, then summing up and applying expressions (1.6) yields, (1.10.2)Replacing (1.10) with (1.9) and rearranging equation (1.8) gives (1.11)Where,Note: different from Euler equation in Cartesian coordinates, the Euler equation in cylindrical coordinates contains source terms from momentum equations in radial and tangential equations.2. Derivation of Euler Equation in Cylindrical coordinates moving at in tangential directionWhere, , ,Then equation (1.11) can be written as follows (2.1)Where Equation (2.1) adopts rotating coordinates but the variables are measured in absolute cylindrical coordinates.3. Derivation of 3D Navier-Stokes Equation in Cylindrical Coordinates3D Navier-Stokes Equations in Cartesian coordinates (3.1)Where,,,In the following derivation, only viscous terms will be derived from Cartesian coordinates to cylindrical coordinates, those inviscid terms having been derived in section 1 will be not repeated. Replacing with gives (3.2.1)Replacing with gives (3.2.2)Multiplying equation (3.1) by , the viscous terms are gives as follows (omitting the negative sign before it from simplicity),(3.3) (3.4.1), (3.4.2), (3.4.3),(3.4.4) (3.4.5) (3.4.6)Expanding expression (3.3) gives,(3.5)= (3.6.1)= (3.6.2)(3.6.3)(3.7.1)Divergence in Cartesian Coordinates (3.7.2)Divergence in cylindrical coordinates (3.7.3)(3.8.1)(3.8.2)(3.9.1)(3.9.2)As we can see from the above that viscous terms in expression (3.5) for the momentum equation in axial/x direction and energy equation can be expressed in variables in cylindrical coordinates, while the viscous terms in (3.5) for momentum equations in radial and tangential directions still contain variables in Cartesian coordinates. Similar manipulation to (1.10) will be adopted in the following.Writing out the viscous terms for momentum equations in radial and tangential coordinates as follows, (3.10.1) (3.10.2)Multiplying (3.10.1) by and multiplying (3.10.2) by , then summing up and rearranging gives,(3.11.1)Multiplying (3.10.1) by and multiplying (3.10.2) by , then summing up and rearranging gives,(3.11.2)(3.12.1)(3.12.2)(3.12.3) (3.12.4)Substituting (3.6.1), (3.6.2) and (3.12) into expressions (3.11) and rearranging yields, (3.13.1) (3.13.2) Making use of expressions (3.4.1), (3.6.1), (3.6.2), (3.8.1), (3.8.2), (3.9.1), (3.9.2),(3.13.1) and (3.13.2), we can get the final expression of 3D Navier-Stokes Equation in cylindrical coordinates as follows,3D Navier-Stokes Equation in cylindrical coordinates,,,,, If the moment of momentum equation is adopted to replace the tangential momentum equation, its expression will be s
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025河南洛阳瀍河回族区第二批就业见习人员招聘笔试考试参考题库及答案解析
- 幼儿园科学探索教案集锦
- 英语词汇记忆技巧与测试题
- 传统四大名著中的现代管理智慧
- 2025文山州富宁县紧密型医共体田蓬一中心分院招聘编外人员(2人)笔试考试参考题库及答案解析
- 建筑项目施工组织设计实务指南
- 财务审批流程优化方案及实施要点
- 腹部体格检查评分标准及操作流程
- 2025广东惠州市龙门县城建项目管理有限公司下属企业招聘造价咨询人员1人考试笔试备考题库及答案解析
- 初中人教版(2024)第2课 俄国的改革教学设计
- 体育舞蹈创编方法
- 2025至2030中国无人驾驶清扫车行业项目调研及市场前景预测评估报告
- 2025江苏南通市崇川区下半年招聘区城市建设管理行政执法大队编外辅助人员10人笔试考试备考试题及答案解析
- 工业锅炉安全培训课件
- 2025人工智能工程师招聘笔试试题及答案
- 2025四川内江人和国有资产经营有限责任公司招聘2人笔试历年参考题库附带答案详解
- 2025云南昆明元朔建设发展有限公司第一批收费员招聘20人笔试历年备考题库附带答案详解2套试卷
- 2025年全国道路运输企业安全管理人员考试笔试试题(100题)附答案
- 职工安全教育培训档案(一人一档模版)
- 二手音响回收合同范本
- 全国大学生职业规划大赛《城市轨道交通工程技术》专业生涯发展展示【高职(专科)】
评论
0/150
提交评论