

免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题:复合函数的求导法则课时:07课型:新授课教学目标 理解并掌握复合函数的求导法则教学重点 复合函数的求导方法:复合函数对自变量的导数,等于已知函数对中间变量的导数乘以中间变量对自变量的导数之积教学难点 正确分解复合函数的复合过程,做到不漏,不重,熟练,正确一创设情景(一)基本初等函数的导数公式表函数导数(二)导数的运算法则导数运算法则123(2)推论: (常数与函数的积的导数,等于常数乘函数的导数)二新课讲授复合函数的概念 一般地,对于两个函数和,如果通过变量,可以表示成的函数,那么称这个函数为函数和的复合函数,记作。复合函数的导数 复合函数的导数和函数和的导数间的关系为,即对的导数等于对的导数与对的导数的乘积若,则三典例分析例1求y sin(tan x2)的导数【点评】求复合函数的导数,关键在于搞清楚复合函数的结构,明确复合次数,由外层向内层逐层求导,直到关于自变量求导,同时应注意不能遗漏求导环节并及时化简计算结果例2求y 的导数【点评】本题练习商的导数和复合函数的导数求导数后要予以化简整理例3求y sin4x cos 4x的导数【解法一】y sin 4x cos 4x(sin2x cos2x)22sin2cos2x1sin22 x1(1cos 4 x)cos 4 xysin 4 x【解法二】y(sin 4 x)(cos 4 x)4 sin 3 x(sin x)4 cos 3x (cos x)4 sin 3 x cos x 4 cos 3 x (sin x)4 sin x cos x (sin 2 x cos 2 x)2 sin 2 x cos 2 xsin 4 x【点评】解法一是先化简变形,简化求导数运算,要注意变形准确解法二是利用复合函数求导数,应注意不漏步例4曲线y x(x 1)(2x)有两条平行于直线y x的切线,求此二切线之间的距离【解】y x 3 x 2 2 x y3 x 22 x 2 令y1即3 x22 x 10,解得 x 或x 1于是切点为P(1,2),Q(,),过点P的切线方程为,y 2x 1即 x y 10显然两切线间的距离等于点Q 到此切线的距离,故所求距离为四课堂练习1求下列函数的导数 (1) y =sinx3+sin33x;(2);(3)2.求的导数五回顾总结六布置作业:1函数yx2cos 2x的导数y_.2函数y(2 0118x)3的导数y_.3曲线ycos(2x)在x处切线的斜率为_4函数yx(1ax)2(a0),且y|x25,则实数a的值为_5已知直线yx1与曲线yln(xa)相切,则a的值为_6曲线yex在点(4,e2)处的切线与坐标轴所围三角形的面积为_7设曲线ye12x与x1的交点为P,则过P点的切线方程为_8已知a0,f(x)ax22x1ln(x1),l是曲线yf(x)在点P(0,f(0)处的切线求切线【答案提示】12xcos 2x2x2sin 2x 224(2 0118x)2 32 41 52 6e272xey308解f(x)a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 蓝领员工绩效管理办法
- 产品打样保密管理办法
- 专职董事监事管理办法
- 中医诊疗服务管理办法
- 西游记团队管理办法
- abc类物料管理办法
- 财务内控人员管理办法
- 中外科研合作管理办法
- 个人广告接入管理办法
- 人防工程审批管理办法
- DB36-T1694-2022-餐厨垃圾集约化养殖黑水虻技术规程-江西省
- 超市卫生管理规范培训
- 国际压力性损伤溃疡预防和治疗临床指南(2025年版)解读
- 知到智慧树网课:病理生理学(南华大学)章节测试满分答案
- 农村建设工匠考试试题及答案
- 中学生心理辅导活动课教案(合集)
- 《心律失常的诊断和治疗》课件
- 职业技术学院2024级药膳与食疗专业人才培养方案
- 《介入治疗技术在临床应用中的进展》课件
- 银行保险机构安全保卫工作自查操作手册
- 委托运营合作合同协议
评论
0/150
提交评论