

全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
备战2012数学应考能力大提升典型例题1.等差数列an的各项均为正数,a13,前n项和为Sn,bn为等比数列,b11,且b2S264,b3S3960.(1)求an与bn;(2)求.解:(1)设an的公差为d,bn的公比为q,则d为正数,an3(n1)d,bnqn1.依题意有解得故an32(n1)2n1,bn8n1.(2) Sn35(2n1)n(n2),所以(1)(1).2.等比数列an的前n项和为Sn,已知对任意的nN*,点(n,Sn)均在函数ybxr(b0且b1,b,r均为常数)的图象上.(1)求r的值;(2)当b2时,记bn(nN*),求数列bn的前n项和Tn.解:(1)由题意,Snbnr, 当n2时,Sn1bn1r.所以anSnSn1bn1(b1),由于b0且b1,所以当n2时,an是以b为公比的等比数列,又a1br,a2b(b1),b,即b,解得r1.(2)由(1)知,nN*,an(b1)bn12n1,所以bn.Tn.Tn,两式相减得Tn,故Tn. 创新题型1.数列an中,a13,anan12n10(nN*且n2).(1)求a2、a3的值;(2)证明:数列ann是等比数列,并求an的通项公式;(3)求数列an的前n项和Sn.2 设数列an的首项a1=1,前n项和Sn满足关系式 3tSn(2t+3)Sn1=3t(t0,n=2,3,4) (1)求证 数列an是等比数列;(2)设数列an的公比为f(t),作数列bn,使b1=1,bn=f()(n=2,3,4),求数列bn的通项bn;(3)求和 b1b2b2b3+b3b4+b2n1b2nb2nb2n+1 参考答案1.【解析】(1)a13,anan12n10(nN*且n2),a2a1416,a3a2611.(2) 1(n2),数列ann是首项为a114,公比为1的等比数列,ann4(1)n1,即an4(1)n1n,当n1时,a1413,an的通项公式是an4(1)n1n(nN*). (3)an4(1)n1n(nN*),Sna1a2an4(1)014(1)124(1)23 4(1)n1n4(1)0(1)1(1)2(1)n1(123n)21(1)n.7 【解析】 (1)由S1=a1=1,S2=1+a2,得3t(1+a2)(2t+3)=3t a2= 又3tSn(2t+3)Sn1=3t,3tSn1(2t+3)Sn2=3t 得3tan(2t+3)an1=0 ,n=2,3,4,所以an
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程师资质及经验证明书(5篇)
- 电子发票开具及报销流程规定合同书
- 2025年音乐教育专业考试题及答案
- 2025年创新创业实践与管理能力测试卷及答案
- 2025年甘肃省平凉华亭市策底镇招聘专业化管理的村文书笔试备考试题及答案详解1套
- 物资采购基本管理制度
- 特殊幼儿患病管理制度
- 特殊材料入库管理制度
- 率土之滨团队管理制度
- 玩具挂件库存管理制度
- 工模外发管理流程模板
- 部编版高一上册语文第三课《百合花》课文原文教案及知识点
- 北京理工附中小升初分班考试真题
- 膀胱镜检查记录
- 英语社团活动课件
- 学前儿童发展心理学-情感
- 二年级下册数学教案 《生活中的大数》练习课 北师大版
- GB∕T 16762-2020 一般用途钢丝绳吊索特性和技术条件
- 电网施工作业票模板
- T∕CAEPI 31-2021 旋转式沸石吸附浓缩装置技术要求
- 国家级高技能人才培训基地建设项目实施管理办法
评论
0/150
提交评论