

免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数的单调性与最大(小)值知识梳理1写出函数单调性的定义?2. 定义法证明函数单调性的步骤_ 3函数单调性的判断方法:(1)定义法,(2)导数法(3)图像和性质重点难点聚焦:1、讨论函数的单调性必须在定义域内进行,因此先求函数的定义域。单调区间是定义域的子集。2、函数的单调性是对区间而言的,如果函数f(x)在区间(a,b)与(c,d)上都是单调递增(或递减),但不能说函数f(x)在区间(a,b) (c,d)上一定是单调递增(或递减)。再现型题组1讨论函数y=kx的单调性。 2.下列函数中,在区间上递增的是( )A B C y= D 3. 函数 y= (x0)的单调增区间是 ( )A. (0,+) B. (-1,+) C.(-,-1) D(-,-34函数是减函数的区间是 ( )A.(2,+) B (-,2) C.(- ,0) D .(0,2) 5、.若函数在区间上的最大值是最小值的3倍,则a=( )A. B. C. D. 6、设函数是减函数,且,下列函数中为增函数的是( )A B C D巩固型题组7、求函数f(x)=的单调区间,并证明其单调性。 8定义在上的函数为减函数,求满足不等式的的值的集合。 9、(1)已知函数在区间上是减函数,求实数的取值范围; (2)已知的单调递减区间是,求实数的取值范围。 提高型题组10、已知函数(1)若是增函数,求a的取值范围;(2)求上的最大值.11、已知在区间上是增函数,在区间上是减函数,又()求的解析式;()若在区间上恒有成立,求的取值范围反馈型题组12、下列函数中,在区间上是增函数的是( )A B C D 13、.函数上的最大值与最小值之和为a,则a的值为( )A B C 2 D 414函数的递减区间为 ( )A.(1,+) B.(, C.(,+) D.(,15、若函数在区间内单调递增,则a的取值范围是( )AB CD16、已知(是常数),在上有最大值3,那么在 上的最小值是 ( )A B C D 17、已知函数在区间0,m上有最大值3,最小值2,则m的取值范围是( )A、 1,+) B、0,2 C、(-,2 D、1,218、若函数f (x) = 4x3ax+3的单调递减区间是,则实数a的值为 .19、已知函数的值域为R,则实数的取值范围是_,若定义域为R,则实数的取值范围是_。20、设函数()讨论的单调性;()求在区间的最大值和最小值 知识拓展.(求值域的方法)1.配方法二次函数(二次函数在给出区间上的最值有两类:一是求闭区间上的最值;二是求区间定(动),对称轴动(定)的最值问题。求二次函数的最值问题,勿忘数形结合,注意“两看”:一看开口方向;二看对称轴与所给区间的相对位置关系),如(1)求函数的值域(答:4,8);(2)当时,函数在时取得最大值,则的取值范围是_(答:);2.换元法通过换元把一个较复杂的函数变为简单易求值域的函数,其函数特征是函数解析式含有根式或三角函数公式模型,如(1)的值域为_(答:);(2)的值域为_(答:)(令,。运用换元法时,要特别要注意新元的范围);(3)的值域为_(答:);(4)的值域为_(答:);3.函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,来确定所求函数的值域,最常用的就是三角函数的有界性,如求函数.,的值域(答:.、);4.单调性法利用一次函数,反比例函数,指数函数,对数函数等函数的单调性,如求,(的值域为_(答:、.);5.数形结合法函数解析式具有明显的某种几何意义,如两点的距离、直线斜率.等.如(1)已知点在圆上,求及的取值范围(答:、);(2)求函数的值域(答:);(3)求函数及的值域(答:、)注意:求两点距离之和时,要将函数式变形,使两定点在轴的两侧,而求两点距离之差时,则要使两定点在轴的同侧。6.判别式法对分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其它方法进行求解,不必拘泥在判别式法上,也可先通过部分分式后,再利用均值不等式:型,可直接用不等式性质,如求的值域(答:)型,先化简,再用均值不等式,如(1)求的值域(答:);(2)求函数的值域(答:) 型,通常用判别式法;如已知函数的定义域为R,值域为0,2,求常数的值(答:)型,可用判别式法或均值不等式法,如求的值域(答:)7.不等式法利用基本不等式求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。如设成等差数列,成等比数列,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广东茂名市供销集团有限公司招聘10人考前自测高频考点模拟试题附答案详解(模拟题)
- 2025年绥化市明水县人民医院招聘中医医生模拟试卷完整参考答案详解
- 2025辽宁抚顺新抚钢有限责任公司招聘拟聘用人员考前自测高频考点模拟试题及答案详解参考
- 2025江苏南通市通州区兴东街道招聘劳务派遣人员4人考前自测高频考点模拟试题及答案详解一套
- 2025年济宁嘉祥县事业单位公开招聘工作人员(教育类)(68人)考前自测高频考点模拟试题及答案详解(必刷)
- 2025贵州省卫生健康委员会“银龄计划”(引进退休高级医疗卫生人才)模拟试卷及答案详解(网校专用)
- 2025年安徽皖信人力宿州分公司业务外委用工招聘4人考前自测高频考点模拟试题及答案详解(有一套)
- 2025呼伦贝尔农垦集团有限公司校园招聘44人模拟试卷及答案详解(考点梳理)
- 2025年丽水遂昌县中医院医共体招聘临时药剂工勤人员2人模拟试卷附答案详解(突破训练)
- 2025春季北方华创招聘考前自测高频考点模拟试题及答案详解(各地真题)
- 跨境资金池管理办法
- 校企挂职锻炼协议书范本
- 驾照换证考试题库及答案
- 医药物流仓库管理流程标准
- 2025至2030鸡汁行业风险投资态势及投融资策略指引报告
- 光电成像原理与技术课件
- (高清版)DB31∕T 1578-2025 微型消防站建设与运行要求
- 儿童百日咳的诊治
- 40篇英语短文搞定高考3500个单词(全部含翻译,重点解析)
- 江苏艺考笔试题及答案
- 2025年中考语文作文中考12大主题作文模板!-分步详解+例文示范
评论
0/150
提交评论