




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
承 诺 书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。我们参赛选择的题号是(从A/B/C中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学院(请填写完整的全名): 参赛队员 (打印并签名) :1. 2. 3. 日期: 2013 年 11 月 2 日评阅编号(教师评阅时填写):汽车车库库存的优化方案摘要 本文研究的是关于汽车车库库存的问题,通过分析汽车参数以及车库数据,对车库进行合理的规划,建立了倾斜泊车模型、单向排列模型、交叉排列模型,利用AutoCAD对以上模型进行逐一的分析,分别回答了题目所给的所有问题。 针对问题一,首先分析了传统平行泊车的弊端,平行泊车难度较大,需要司机较高的驾驶技术,因此,我们建立了倾斜泊车模型。查阅了相关汽车的资料并根据汽车的参数了解汽车的最小转弯半径。其次通过对车库空间利用率以及道路通畅度的综合考虑,我们认为当停车位与通道成一定夹角时效果最佳,并利用最小的转弯半径求得极限角度。最后根据实际环境中的不确定因素,我们将停车位大小适当进行增加,大大提高了安全性。 针对问题二,首先,根据题目中所给条件,即可以把车子先行调出,然后再调动内部的车,使内部车辆可以驶出。为了进一步提高车库的利用率,我们决定设计一个去掉通车道,只保留消防车道的方案。其次,我们根据停车位不同的排列方式设计了两种不同的模式,即单向排列模型及交叉排列模型。分别得出这两种模型的函数关系式,再通过小轿车和商务车两种车位所占面积,小轿车和商务车驶入停车位最佳角度等情况,分别计算出两种模型各能停多少辆小轿车和商务车在车库中。最后,我们对这两种模型进行了比较,最终选择交叉排列模型为最佳模型。 针对问题三,我们通过问题二的模型进行了分析,由于条件三的改变,使得模型得到简化。由于车子的前轮可以90度转动,即小车的转弯半径可以忽略不计。再结合消防通道的设计,明确了车从车库开出的具体方向,设计了最优化的调运方案,使得调运方案费时最短。 最后就对本文模型建立的不足之处进行剖析,并阐明了实际建设的停车场与理论设计的停车场的不同之处,需要具体问题具体分析。关键词:倾斜泊车模型 交叉排列模型 车库利用率 安全性 16一 问题的立意与背景1.1 背景资料: 由于生活质量和收入水平的不断提高,越来越多的城市居民有金钱基础和购车欲望。在最近几年我国城市机动车的增长速度平均在15%左右,一个新的私家车消费高潮很快就要到来。随着人们对汽车的需求量的增加,汽车制造商们也加快了汽车制造的步伐。而与此同时一个城市对汽车的需求量较大,故而需要一次性输送一大批汽车。但是这所有的汽车不能在同一时间全部制造完成,汽车制造厂的车库库存问题由此产生,如何解决好车库库存问题,使车库利用率最大化,对于工厂来说有着重要的现实意义。1.2 需要解决的问题:如何利用已知的车库大小来停放最多的车辆,即在满足一定要求并符合国家安全条例的条件下,尽可能的提高仓库的利用率。1. 在保证满足安全,道路通畅的条件下,通过车型的有关数据,建立模型,选择最佳的车位形状。提高仓库利用率。2. 在满足车辆无法调出时,可以先将阻碍的车辆开出车库外的情况下,建立模型,使得车库利用率达到最大化。3. 在问题2的解决情况下,假定汽车前轮可以左右转动90度,且车速相同。建立模型,使车库四个角落的汽车全部开出所需时间最小的方案。二 问题的解决思路根据这个问题的实际背景和现有的汽车参数数据,首先依据所查文献中的汽车的相关技术参数及车库的安全参数对车库的车位形状选择的确定做定量的分析与综合求解;然后依据求解的车位形状,综合所有因素,解出最后的终极方案。问题1)首先通过查阅相关资料了解到汽车的主要运动原理,从而就转弯半径和轮距,汽车长度的概念及数据,结合所求解得到的相关公式,根据理论分析和实际需求对车库的车位形状进行选择。然后由于是两种车型,故而需要通过分区域来停放。最后联系安全隐患问题最终确定车库的库存设计方案。问题2)在不用考虑每辆汽车都能单独调出的情况下,可以将所有的除消防车道以外的通车道撤去,增大车库利用率,最后联系安全隐患问题最终确定车库的库存设计方案。问题3)利用问题二中建立的模型,再根据条件中给出的车辆前轮可以转动90度,结合消防通道的设计,明确四个角落的车辆开出的方向。确定最优化的调运方案。三 基本假设1)假设每种汽车的大小结构都是相同的,不同种汽车的大小不同,结构相同。2)假设车子的车宽车长都是固定不变的。3)假设存放车辆的司机的驾驶能力都是一样的,属于中等水平。4)假设每辆车都能按规定停车,不超出车位线。5)假设汽车制造厂制造的大小车型的数量是一样的。四 符号系统-汽车最小转弯半径-汽车转弯时转向中心到内侧转向车轮轨迹-停车位的长边与通道的夹角 -通车道的最小宽度-停车位的纵向宽度 -小轿车的长度-停车位宽度 -小轿车车位宽度-商务车车位宽度 -停车位末端与消防车道之间的距离-停车位长度 -小三角形顶点到虚线的距离-上下两个停车位的斜向距离 -商务车车位长度-除去消防车道后仓库的长度 -除去消防车道后仓库的宽度-小轿车车位长度 -最顶端可以停放车辆的最大值-一列停车位的最大个数 -多余空间总车位数量-最终空余的面积-多余空间的面积五 模型的建立与求解5.1 车库车辆泊位规划模型(有通车道) 5.1.1 单辆车停车位最佳角度 由于考虑到问题一中所有汽车都需要畅通无阻的开出车库,所以汽车从通道进入车位一般得转弯,在这里就应该考虑到汽车的最小转弯半径。汽车转弯半径(RADIUS OF TURNING CIRCLE)就是指当方向盘转到极限位置时,外侧前轮轨迹圆半径.转弯半径在很大程度上代表了汽车能够通过狭窄弯曲地带或绕开不可越过障碍物的能力。我们查阅相关资料发现不同大小的车型的最小转弯半径和长宽并不相等,数据如下:车子的具体参数(单位:mm)车型长/宽最小转弯半径小轿车4833/18105700商务车4930/18956300 可设车子的最小转弯半径为,那么汽车转弯时转向中心到汽车内侧转向车轮轨迹为,如下图所示:车辆转弯模拟图 对于通畅考虑需要有一条边是靠近通道的,为了使得该车位的小轿车自由进出。要求出单辆车停车位最佳角度,我们设该矩形停车位的长边与通道的夹角为。为了留出通道空间及使得车库利用率最大化。所以,我们需要假设该通道的所有车位都保持着与该车位相同的角度和距离平行排列,如下图所示:车辆行驶路径图 车辆沿着箭头方向行驶转弯角度驶入车位。具体小轿车的行驶入车位的情形如下图所示:车辆驶入图 为通车道的最小宽度。小轿车从通车道以角度进入停车位,所以通道的最小宽度。 在保证车辆能够自由进出的前提下,本着要求通道宽度尽量小的原则,每辆车均以角度停放,用表示小轿车的宽度,用表示车辆长度,考虑到消防安全问题,所以根据汽车库设计防火规范(GBJ67-84)中的下表所示:汽车与汽车之间以及汽车与墙、柱之间的间距注:当墙、柱外有暖气片等突出物时,汽车与墙、柱的间距应从其凸出部分外缘算起。所以停车位的宽度应比车辆的宽度要宽,用表示停车位的纵向宽度,用表示停车位宽度,用表示停车位长度,图中上虚线分割停车位的小三角区域可以提供给上面或下面的停车位使用,表示停车位末端与消防车道之间的距离,表示小三角形顶点到虚线的距离。如下图所示:所以可得关于的函数,且有:现在按照上图所示,计算每辆车占据的停车位面积S()。假设该排车位是无限长的,可以忽略该排车位两端停车位浪费掉的面积,因为它们被平均到每个车位上去的公摊面积很小,可以不计。从车辆所占的停车位来看,它占据的面积是,另外,它所占的通道面积为。因为一个通车道可以由两排车位使用,所以我们得到 我们先求小轿车占用的停车位的最小面积,将、代入,可得求导可得所以当即时,达到最小,分析表明,当停车位与通车道夹角时可以使每辆小轿车占据停车位的面积达到最小。同理可得,当停车位与通车道夹角为时可以使每辆商务车占据停车位的面积达到最小。5.1.2 仅有一种车型的全局车位排列 本着通道顺畅的原则,我们所设计的通车道是单向的,由上得出与单向通道的夹角为,可使单位车辆占据的面积最小,此时宽度为R的单向通道可提供给两边的停车位使用,通车道两边的停车位角度应该相对,如图1所示: 图1 显而易见,停车排数最多只能是通道数的两倍,即:,当按照一排停车位,一条通道,一排停车位这样三排一组的形式加以组合,依次排列,此时。所以,车库的形状应如图2所示:图25.2 车库车辆泊位规划模型(无通车道)5.2.1 车库设计模型 在车辆无法调出时,可以先将阻碍的车辆开出车库外,在这种情况下,我们将空间的利用率进一步提升,即将除消防车道以外的所有通车道省去。如下图所示:图3 亦或是如图4所示:图45.2.1 车库设计优化模型比较考虑到使车库的利用率最大化,所以在这里我们需要比较图3和图4两种车库的车位规划模型,选择出最优化的方案。先讨论图3的模型,即单向排列模型。用表示除去消防车道后仓库的宽度,用表示除去消防车道后仓库的长度。可以看出,当比较大的时候,停车位末端会与消防通道末端相隔较大的距离,这较大的距离所产生的空间,我们称为多余空间。在这多余空间里,我们还可以设计放一些停车位使得车库利用率最大化。如下图所示:用表示上下两个停车位的斜向距离,用表示一列停车位的最大个数,且为正整数,用表示最顶端可以停放车辆的最大值,表示模型一中最顶端可以停放车辆的最大值减去,用表示多余空间中,从下端开始,每增加一列停车位,就经过i行的停车位数量。用表示多余空间总车位数量。可以列出以下式子:. 用表示最终空余的面积,用表示多余空间的面积,得出以下式子:最终的空余面积的表达式:再讨论图4的模型,即交叉排列模型:由图可知,因为每相邻两个停车位所朝方向相同,我们不妨将这朝向相同的两列车位设为一组,设其长为a,其中,再分别计算出横向及纵向可停车总数,设起分别为A,B,则,但是要注意的是,剩余距离的不同可能会影响结果,下面分不同情况讨论:1) ,即纵向剩余距离足够时,则可以再多停一列。2)如果4m,故而消防车道应取为R。而由上面证明可知宽度为R的消防通道足够使商务车通过5m的车库门。 以一排停车位,一条通道,一排停车位为一组求出宽度:将具体数值代入可得,。由上可知宽度为200m的仓库真正可用的宽度需要减去消防通道的宽度4m,即真正宽度,同理仓库真正可以用的长度为。所以横向可停小轿车的数量为,纵向可停小轿车的数量为,因为剩余距离不足以增加小轿车位,故小轿车最终摆放为24行120列。同时我们可求出小轿车车位可改造为商务车车位最大数量为,故我们应该设置为小轿车和商务车的车位数量分别为各12行,列数同为120列。所以得到车位的设计模型如下图:5.4.2 问题二、三的求解 问题二条件中提到不用考虑每辆汽车都需要单独调出,所以可以将所有的除消防车道以外的通车道撤去,我们建立了模型三、四来解决这个问题。我们比较具体问题中模型三和模型四哪一个更加优化,选择出最优化的停车方案。关于模型三,我们需要得出一行停车位中最多可以放多少个小轿车停车位。将数值代入公式,即一行最多可以放置97个小轿车停车位。再根据公式。求出一列停车位的最大个数个。根据,将代入可得,由于都是正整数,将代入得到当时,当时,.当时,将以上运算所得数据代入求得所以整个停车厂车位的总数目为个。关于模型四,因为都是将多余空间利用起来故而可以套用问题一的形式,即横向可停小轿车的数量为,横向纵可停小轿车的数量为,即小轿车摆放为38行120列,另且,故多余的空间可多造的小汽车位为,所以停车厂总车位个数共为个。与模型三相比,停车位个数多于模型三。所以我们选择模型四解决问题二、三。同时我们可求出小轿车车位可改造为商务车车位最大数量为,故我们应该设置小轿车和商务车的车位数量分别为各36行和2行,其中小轿车有5行为121列,其余为120列,且商务车120列。 问题三中,假定每辆汽车开出仓库时的速度均相同,且汽车前轮可以左右转动90度,意味着汽车的横着进出停车位。而我们所要求的是将车库4个角落全部开出所需最少时间的调运方案。根据汽车库设计防火规范(GBJ67-84),我们在问题二所建立的模型中设置了消防通道,所以我们可以将车辆从消防通道中驶出车库大门。即我们在这里简化了问题三。只需将四个角落的车子沿消防通道开出便能达到最少的时间。如下图箭头所示:图7六 对未来的展望 停车场的优化设计实际上是一个比较复杂的非线性整数规划问题。首先我们将具体问题理想化,建立了一般停车场大致可以参考的布局和模型,有利于问题的简化性。其次,我们将多种模型进行对比,使设计更加优良。最后,我们对于利用率、易用性、安全性多方面进行考虑,使设计更加全面。但是在现实生活中可能会出现更多复杂的,如果要运用到现实车库建设上,还需要考虑现实环境的不确定因素以及现实中特定的需要,结合理想情况下的基本布局加以调整,进行局部修改而得出较好的设计方案。参考文献1赵静,但琦,数学建模与数学实验,北京:高等教育出版社,20082何文章,宋作忠,数学建模与实验,哈尔滨工程大学出版社,20023包子龙,刘欣,曹志军,数学建模一周论文,第10页到第12页,/link?url=IUp
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教部编版三年级语文下册《口语交际:春游去哪儿玩》示范教学课件
- 教育孩子心得体会模版
- 2024年天文知识竞赛教学总结模版
- 北魏政治和北方民族大交融教学设计
- 11《我是一只小虫子》(课件)
- 文博会新质生产力
- 大学生职业规划大赛《广播电视学专业》生涯发展展示
- 餐厅管理员述职报告
- 慢性淋病的临床护理
- 学前儿童发展 课件 第8-12章 学前儿童思维的发展-学前儿童社会性的发展
- CJJ 33-2005城镇燃气输配工程施工与验收规范
- 《市场营销:网络时代的超越竞争》第4版 课件 第9章 通过构建渠道网络传递顾客价值
- 农民工工资代付款方协议模板
- 药物合成反应-9合成设计原理
- 跨学科阅读纲要智慧树知到期末考试答案章节答案2024年山东师范大学
- 2025届湖南省数学高一下期末学业水平测试试题含解析
- 哮病-《中医内科学》教案
- 《阵列式消声器技术要求》(T-CAEPI 17-2019)
- 起重工属具安全使用规范课件
- 社区警务工作培训
- 山西省众辉公司招聘考试题库
评论
0/150
提交评论