高一数学三角函数的诱导公式三_第1页
高一数学三角函数的诱导公式三_第2页
免费预览已结束,剩余3页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高一数学三角函数的诱导公式三课 题:1.2.3正弦、余弦的诱导公式(三)教学目的:能熟练掌握诱导公式一至五,并运用求任意角的三角函数值,同时学会关于90 k a, 270 a四套诱导公式,并能应用,进行简单的三角函数式的化简及论证。教学重点:诱导公式教学难点:诱导公式的灵活应用授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入:诱导公式一(其中): 用弧度制可写成 公式二: 用弧度制可表示如下: 公式三: 公式四: 用弧度制可表示如下: 公式五: 用弧度制可表示如下: 二、讲解新课: 诱导公式6:sin(90 -a) = cosa, cos(90 -a) = sina. tan(90 -a) = cota, cot(90 -a) = tana. sec(90 -a) = csca, csc(90 -a) = seca诱导公式7:sin(90 +a) = cosa, cos(90 +a) = -sina. tan(90 +a) = -cota, cot(90 +a) = -tana. sec(90 +a) = -csca, csc(90+a) = seca如图所示 sin(90 +a) = MP = OM = cosa cos(90 +a) = OM = PM = -MP = -sina或由6式:sin(90 +a) = sin180- (90 -a) = sin(90 -a) = cosacos(90 +a) = cos180- (90 -a) = -sin(90 -a) = -cosa诱导公式8:sin(270 -a) = -cosa, cos(270 -a) = -sina. tan(270 -a) = cota, cot(270 -a) = tana. sec(270 -a) = -csca, csc(270-a) = seca诱导公式9:sin(270 +a) = -cosa, cos(270 +a) = sina. tan(270 +a) = -cota, cot(270 +a) = -tana. sec(270 +a) = csca, csc(270+a) = -seca三、讲解范例:例1证: 左边 = 右边 等式成立例2解:例3 解: 从而例4 解: 四、课堂练习:1计算:sin315-sin(-480)+cos(-330) 解:原式 = sin(360-45) + sin(360+120) + cos(-360+30) = -sin45 + sin60 + cos30 =2已知解: 3求证: 证:若k是偶数,即k = 2 n (nZ) 则: 若k是奇数,即k = 2 n + 1 (nZ) 则:原式成立4已知方程sin(a - 3p) = 2cos(a - 4p),求的值。解: sin(a - 3p) = 2cos(a - 4p) - sin(3p - a) = 2cos(4p - a)- sin(p - a) = 2cos(- a) sina = - 2cosa 且cosa 05已知解:由题设: 由此:当a 0时,tana 0, cosa 0, a为第二象限角, 当a = 0时,tana = 0, a = kp, cosa = 1, cosa = -1 , 综上所述:6若关于x的方程2cos2(p + x) - sinx + a = 0 有实根,求实数a的取值范围。 解:原方程变形为:2cos2x - sinx + a = 0 即 2 - 2sin2x - sinx + a = 0- 1sinx1 ; a的取值范围是五、回顾小结 应用诱导公式化简三角函数的一般步骤:1用“- a”公式化为正角的三角函数;2用“2kp +

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论