

免费预览已结束,剩余6页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题研究:数列的求和例题解析【例1】 求下列数列的前n项和Sn:(3)先对通项求和【例2】 求和:【例3】 求下面数列的前n项和:比数列,另一个数组成以3n2为通项的等差数列,分别求和后再合并解 设数列的通项为an,前n项和为Sn说明 等比数列的求和问题,分q=1与q1两种情况讨论的前n项之和是 数列bn的前n项和Sn=b1b2bn【例5】 求在区间a,b(ba,a,bN)上分母是3的不可约分数之和其中,可约分数是a,a1,a2,b故不可约分数之和为=b2a2解法二两式相加:2S=(ab)(ab)(ab)其个数为以3为分母的分数个数减去可约分数个数即3(ba)1(ba1)=2(ba) 2S=2(ba)(ab) S=b2a2【例6】 求下列数列的前n项和Sn:(1)a,2a2,3a3,nan,(a0、1);(2)1,4,9,n2,;(3)1,3x,5x2,(2n1)xn-1,(x1)解 (1)Sn=a2a23a3nan a0 aSn=a22a33a4(n1)annan+1SnaSn=aa2a3annan+1 a1(2)Sn=149n2 (a1)3a3=3a23a1 2313=3123113323=3223214333=332331n3(n1)3=3(n1)23(n1)1(n1)3n3=3n23n1把上列几个等式的左右两边分别相加,得(n1)313=3(1222n2)3(12n)n 122232n2(3) Sn=13x5x27x3(2n1)xn-1 xSn=x3x25x3(2n3)xn-1(2n1)xn两式相减,得(1x)Sn=12x(1xx2xn-2)(2n1)xn两式相减,得说明 求形如anbn的数列的前n项和,若其中an成等差数列,bn成等比数列,则可采用推导等比数列求和公式的方法,即错位相减法,此方法体现了化归思想nN*,若bn=(1)nSn,求数列bn的前n项和Tn分析 求bn的前n项和,应从通项bn入手,关键在于求an的前n项和Sn,而由已知只需求an的通项an即可3,由a2=1,解得a3=1即a1=1,a2=3,a3=5, d=2an=12(n1)=2n1Sn=135(2n1)=n2bn=(1)nSn=(1)nn2Tn=12223242(1)nn2当n为偶数时,即n=2k,kN*Tn=(1222)(3242)(2k1)2(2k)2=37(4k1)当n为奇数时,即n=2k1,kN*Tn=12223242(2k1)2=12223242(2k1)2(2k)2(2k)2=(2k1)k(2k)2=k(2k1) an1 an=2n1 以下同解法一说明 本题以“等差数列”这一已知条件为线索,运用方程思想,求数列an的通项an,在求数列bn的前n项和中,通过化简、变形把一般数列的求和问题转化为等差数列的求和问题由于(1)n的作用,在变形中对n须分两种情况讨论高考资源网(www.k
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年肿瘤精准医疗临床实践中的数据挖掘与应用研究
- 2025年家庭教育指导服务市场细分领域市场细分与竞争格局
- 2025年工业互联网平台同态加密技术在工业研发设计中的可行性探讨报告
- 2025年智能可穿戴医疗设备在心血管疾病早期筛查与康复中的市场需求与技术创新趋势
- 2025年工业互联网平台量子密钥分发技术产业链上下游协同发展报告
- 2026届江苏省泰兴市第三高级中学高二化学第一学期期末检测模拟试题含答案
- 2025年Python二级考试冲刺押题卷 知识点深度讲解与应用
- 辽宁省抚顺市一中2026届化学高二第一学期期末考试试题含答案
- 2025年公务员考试行测图形推理模拟试卷 解题技巧专项训练
- 2025年初级会计职称考试冲刺押题试卷 财务管理专项训练
- 2025至2030中国汽车金融行业市场深度分析及竞争格局与发展前景展望报告
- 脊柱内镜手术机器人系统设计与精准位置控制研究
- 排尿评估及异常护理方法
- 语音厅新人培训:从零开始到主播之路
- 公司销售pk策划方案
- 2025年铜陵港航投资建设集团有限公司所属企业公开招聘19人笔试参考题库附带答案详解
- 药房药品追溯管理制度
- 液氧应急预案管理制度
- 两癌课后测试题及答案
- 抗结核药所致药物性肝损伤诊治指南(2024年版)解读
- 社会工作者职业发展困境及其干预措施
评论
0/150
提交评论