江苏江丹徒高中数学3.4.1函数与方程3教案苏教必修1_第1页
江苏江丹徒高中数学3.4.1函数与方程3教案苏教必修1_第2页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课题3.4.1函数与方程(3)课型新授教学目标:1进一步理解二分法原理,能够结合函数的图象求函数的近似解,从中体会函数与方程之间的联系及数形结合在实际问题中的应用2通过本节内容的学习,渗透无限逼近的数学思想及数学方法教学重点:用图象法求方程的近似解;教学难点:图象与二分法相结合教学过程备课札记一、问题情境1复习二分法定义及一般过程;2二分法求方程近似解的前提是确定根存在的区间,如何能迅速地确定呢?二、学生活动利用函数图象确定方程lgx3x解所在的区间 三、建构数学1方程的解的几何解释:方程f(x)g(x)的解,就是函数yf(x)与yg(x)图象交点的横坐标2图象法解方程:利用两个函数的图象,可精略地估算出方程f(x)g(x)的近似解,这就是图象法解方程注:(1)在精确度要求不高时,可用图象法求解;(2)在精确度要求较高时,先用图象法确定解存在的区间,再用二分法求解3数形结合:数形结合思想是一种很重要的数学思想,数与形是事物的两个方面,正是基于对数与形的抽象研究才产生了数学这门学科,才能使人们能够从不同侧面认识事物,华罗庚先生说过:“数与形本是两依倚,焉能分作两边飞数缺形时少直观,形少数时难入微。”把数量关系的研究转化为图形性质的研究,或者把图形性质的研究转化为数量关系的研究,这种解决问题过程中“数”与“形”相互转化的研究策略,就是数形结合的思想。数形结合思想就是要使抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合起来。四、数学运用例1利用函数图象确定方程lgx3x的近似解例2 在同一坐标系作出函数yx3与y3x1的图象,利用图象写出方程x33x10的近似解(精确到0.1)变式训练:用二分法求方程的近似解(精确到0.1)例3 在同一坐标系中作出函数y2x与y4x的图象,利用图象写出方程的近似解(精确到0.1)练习:(1)方程lgxx5的大于1的根在区间(a,a1)内,则正整数a 再结合二分法,得lgxx5的近似解约为 (精确到0.1)(2)用两种方法解方程2x23x1五、要点归纳与方法小结1方程解的几何解释;2先

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论