设计说明书.doc

蔬菜钵体苗自动移栽机取苗装置设计含开题、proe三维及24张CAD图

收藏

资源目录
跳过导航链接。
蔬菜钵体苗自动移栽机取苗装置设计含开题、proe三维及24张CAD图.zip
压缩包内文档预览:(预览前20页/共63页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:82960004    类型:共享资源    大小:43.27MB    格式:ZIP    上传时间:2020-06-01 上传人:QQ14****9609 IP属地:陕西
50
积分
关 键 词:
蔬菜 钵体苗 自动 移栽 机取苗 装置 设计 开题 proe 三维 24 CAD
资源描述:
蔬菜钵体苗自动移栽机取苗装置设计含开题、proe三维及24张CAD图,蔬菜,钵体苗,自动,移栽,机取苗,装置,设计,开题,proe,三维,24,CAD
内容简介:
任务书课题名称单行蔬菜钵体苗自动移栽机的设计取苗装置设计主要任务与目标现代的中国是一个经济飞速发展的中国,是一个农业大国,更是一个工业大国,我国也有越来越多的重视农业与工业的结合,将工业机械用于农业,以减轻人力操作,增加作业效率,蔬菜移栽机也更多的在进行开发并投入使用价值,对于这方面的研究也更加有意义。所以,我们结合所学,应用三维仿真软件,初步设计出移栽机的取苗机构,为以后的进一步研究做基础。 主要内容与基本要求1、查找国内外相关文献资料,了解西方发达国家和我国蔬菜移栽机方面的区别、合理之处机器弊端 2、收集整理其他国家对于移栽机的分类及其成果 3、整理数据资料落实写作。4、通过对文献的研究和分析,具体描述我国农业机械尤其是自动移栽机的发展和展望。5、通过上述分析,设计蔬菜自动移栽机。要求: 1文献综述报告(不少于3000字)一篇2开题报告一篇3毕业论文一篇(不少于10000字)4实习日记、实习报告3000字以上主要参考资料及文献阅读任务1 我国蔬菜育苗移栽机械化的现状与发展方向,/2007/3-5/94922.htm2 陈殿奎.蔬菜机械化育苗的现状与展望J农业工程学报,1990,(12):20253 G. V. Prasanna Kumar ; H. RahemanInternational Journal of Vegetable Science,Vol.14,No.3,232-2554 Konosuke TSUGA. Development of fully automatic vegetable transplanter.JARQ 34, 2128 (2000)5 王君玲,高玉芝,李成华.蔬菜移栽生产机械化现状与发展方向.农机化研究,2004(02):22286 张波屏.现代种植机械工程M北京:机械工业出版社,19977 封 俊论我国早地栽植机械的开发前景与方向J中国农机化,2000,(4):12138 俞高红,陈志威,赵匀,孙良,叶秉良椭圆一不完全非圆齿轮行星系蔬菜钵苗取苗机构的研究DoI:10390l,JME2012130329 毛君, 毕长飞.基于Pro/Engineer 采煤机的三维动态仿真与优化设计J.煤矿机械,2006,27(6) : 990-994.外文翻译任务(见外文翻译)计划进度:起止时间内容2013.01.072013.01.12调研、信息汇总,文献查阅分析2013.01.132013.01.30外文翻译、文献综述、开题报告,并熟悉理论力学、机械原理等相关知识2013.01.31 2013.03.01提交开题报告、文献综述及外文翻译2013.03.022013.03.08开题答辩2013.03.092013.03.16蔬菜移栽机整体方案设计2013.03.172013.03.30取苗机构设计及零部件设计2013.03.312013.04.11三维CAD建模、装配2013.04.122013.04.24三维运动学分析仿真2013.04.252013.05.02结构改进设计及毕业论文撰写2013.05.032013.05.10完成并提交毕业论文2013.05.112013.05.24整理材料准备答辩2013.05.252013.05.29论文答辩实习地点指导教师签 名年 月 日系 意 见系主任签名: 年 月 日学院盖章主管院长签名: 年 月 日 开题报告班 级姓 名课题名称单行蔬菜钵体苗自动移栽机的设计取苗装置设计开题报告目 录1 选题的背景与意义1.1 国内外研究现状和发展趋势1.2 蔬菜移栽机研究意义2 研究的基本内容与拟解决的主要问题2.1 基本内容2.2 拟解决的主要问题3 研究方案、可行性分析及预期研究成果3.1 研究思路方案3.2 可行性分析3.3 预期研究成果4 研究工作计划参考文献(开题报告全文附后)成绩:答 辩意 见(从选题、任务工作量、质量预期、可行性等几个方面)答辩组长签名: 年 月 日系主任审核意见签名: 年 月 日单行水稻钵体苗自动移栽机的设计取苗装置设计李宇通(机械设计制造及其自动化09级(4)班 B09300414)1 选题的背景与意义据FAO统计,2006年中国已成为世界上最大的蔬菜生产国,蔬菜产量约占世界总产量的49.61。改革开放以来,我国蔬菜产量每年呈持续增长的势头,发展迅猛。据中国农业统计资料显示,我国蔬菜播种面积在上世纪80年代年均增长近10%,90年代年均增长14.5%,本世纪前7年平均增长1.9%,到2007年达到2.94亿亩,总产量6.41亿吨。其中,蔬菜2.6亿亩,5.65亿吨,人均占有量427公斤。蔬菜已经成为我国农业中仅次于粮食的第二重要农产品,近年来,浙江省在种植业结构调整和效益农业的发展上取得了显著成效,蔬菜生产面积、总产量、总产值逐年增加。浙江省已成为长江三角洲地区重要的蔬菜生产基地,基本培育形成沿杭州湾两岸及沿海设施出口蔬菜产业带。同时,蔬菜种植业也逐步成为发展我国和我省农村经济的重要组成部分2。1.1 国内外研究现状和发展概述1.1.1自动移栽机研究现状在发达国家移栽机发展起步较早,早在20世纪30年代,国外就出现手工喂苗的移栽机具,在一定程度上减轻了人工移栽的劳动强度。上世纪50年代开始,欧洲国家研制出不同结构形式的半自动移栽机和制钵机。到了上世纪70年代和80年代,半自动移栽机在欧美、前苏联等农业较发达的国家和地区得到广泛应用。到90年代,研究人员对从育苗带栽植整个系统进行了研究,使育苗盒栽植有机地结合,研制出多种全自动移栽机。目前,国外的自动移栽技术已经走向成熟阶段,而我国目前正处於起步阶段,以半自动为主3。1.1.2 自动移栽机的构造插秧机的工作过程,因结构不同而各有差异,但基本流程大致相同。其“群体逐次分格取秧直接栽插”原理为:秧苗以群体状态整齐放入秧箱,随秧箱作横向移动,使取秧器逐次分格取走一定数量的秧苗,在插秧轨迹控制机构作用下,按农艺要求将秧苗插入泥土中,取秧器再按一定轨迹回至秧箱取秧。各种插秧机栽插部分的组成基本相同:人力插秧机由秧箱、分插秧机构、机架和浮体(船板)等组成,自走式机动插秧机还设有动力驱动、行走装置、送秧机构等部分4。1.1.3蔬菜自动移栽极研究趋势为了克服漏插、漂秧和钩伤秧等缺陷,今后将通过对送秧、分秧、插秧等工作机构的改进与创新,继续提高插秧质量和对各种秧苗的适应性,同时要研制适用于每穴一株杂交水稻秧苗的新型插秧机;研究提高工作装置的自动化程度,如实现自动装秧及故障自动停机等的途径;进一步完善包括育秧在内的水稻全套种植机械化体系,提高非插秧季节水稻插秧机的综合利用程度。1.2 蔬菜移栽机研究意义目前,我国生产的自动移栽机,大都属于半自动化机器,秧苗仍需要人工供给,不仅劳动强度打,而且作业质量难以保证。因此,要实现移栽的自动化,必须要解决秧苗的供给问题。本课题是对蔬菜钵体自动移栽取苗装置的设计研究。2 研究的基本内容与拟解决的主要问题2.1 基本内容本次毕业设计中主要完成的内容包括:1)根据蔬菜钵苗取苗的技术特点和农艺要求,模拟人工取苗的轨迹、动作和姿态要求,发明蔬菜钵苗取苗机构,满足机械取苗特殊的工作轨迹要求,比现有的蔬菜取苗机构工作效率高,并且工作平稳。2)论述了该取苗机构的工作原理和结构特点,建立取苗机构的运动学模型3)根据蔬菜取苗农艺要求,提出蔬菜钵苗取苗机构参数优化的目标和优化方法,分析各参数变化对取苗机构运动特性的影响,利用自主开发软件,采用人机交互的优化方法,优化出取苗机构的结构参数,满足蔬菜钵苗取苗的工作要求。4)建立取苗机构的三维实体模型,对其进行虚拟装配。2.2 拟解决的主要问题移植是蔬菜生产过程中的重要环节之一,移植具有对气候的补偿作用和使作物生育提早的综合效益,可以充分利用光热资源,其经济效益和社会效益均非常可观。目前,国内正在应用的移植机械多为半自动移植机,半自动移植机靠手工送苗,效率低。本课题的立意旨在减轻劳动力,加快栽植劳动速度,获取更大经济利益。3 研究思路方案、可行性分析及预期成果本设计论文拟采用理论分析与三维建模与仿真实验的方法,在国内外移栽机的基础上,通过三维建模组装,并对其进行初步的运动学分析。3.1 研究思路方案3.1.1 目前已有的移栽机取苗机构原理分析取苗机构需要模拟人手从钵苗盘中把钵苗取出,然后在某个位置释放,使钵苗落入植苗器中,以便植苗器栽植,接着取苗机构重复上述动作。通过分析现有取苗机构的轨迹特点,为了顺利从钵苗盘中夹取钵苗,要求有一段尖嘴形的取苗轨迹,而且这段尖嘴形的取苗轨迹要有一定的长度,同时取苗爪进入钵苗盘的轨迹段和退出钵苗盘的轨迹段的夹角不能太大,并且进入和退出钵苗盘的取苗轨迹要尽量的平直。在取苗机构的取苗阶段,取苗爪进入钵苗盘前取苗爪完全张开,当到钵苗盘底部时,取苗爪完全夹紧钵苗,然后钵苗随着取苗爪一起往钵苗盘外运动,实现取苗。同时要求取苗机构有持苗和推苗阶段,持苗即取苗爪夹持钵苗运动;推苗阶段,即取苗爪完全张开,推苗爪向下推苗,钵苗落入植苗器中,实现了推苗。另外还要求取苗爪的有回程阶段,此阶段要求取苗爪在推完苗后一直保持张开状态,直到下一次取苗开始。旋转式行星轮系取苗机构,如图所示,该机构包括传动和取苗臂两部分,其传动部分由一个行星架(9)、一个不完全非圆齿轮(5),四个全等的椭圆齿轮(1、2、6、8)以及凸锁止弧(4)和凹锁止弧(3、7)组成,不完全非圆齿轮的几何中心为, 4个椭圆齿轮的旋转中心分别为、。该取苗机构工作时(以一侧齿轮结构为例进行介绍),不完全非圆齿轮5(简称太阳轮)固定不动,中间椭圆齿轮2(简称中间轮)在行星架9的带动下与太阳轮5啮合,实现非匀速齿轮传动,另外,行星椭圆齿轮1(简称行星轮)与中间椭圆轮2啮合,也实现非匀速连续传动,从而使得行星轮1相对行星架9作非匀速转动,使得针尖形成段工作轨迹,如图2.4所示。当中间轮2转到太阳轮5的无齿部分时,太阳轮5和中间轮2脱离啮合,此时固接在太阳轮5上的凸锁止弧4与固接在中间轮2上的凹锁止弧3配合,锁止中间齿轮2,防止中间轮2相对行星架9转动,此时行星轮1和行星架9一起绕点做匀速转动,针尖P形成段圆弧轨迹。行星轮1的绝对运动为行星架9绕中心的匀速圆周转动和行星轮1相对行星架9的非匀速间歇转动的合成运动。通过行星轮轴与行星轮1固接的取苗爪11,一方面随着行星架9作匀速圆周运动,另一方面随着行星轮相对行星架作非匀速间歇转动。在这两种运动的共同作用下,取苗爪针尖按要求的姿态运动,通过确定合适的结构参数,形成蔬菜钵苗取苗的工作轨迹。(a)取苗机构初始位置(b) (b)行星架转过角后取苗机构位置1、8行星椭圆齿轮 2、6中间椭圆齿轮 3、7凹锁止弧 4凸锁止弧5不完全非圆齿轮 9行星架 10、11取苗臂 12钵苗盘图3.1蔬菜钵苗取苗机构简图从图的机构初始安装位置开始,当行星架转过不同的角度时,形成不同的工作段轨迹: 段轨迹,即取苗爪进入钵苗盘的轨迹,其中在取苗爪到达点时,取苗爪完全夹紧钵苗;然后钵苗随着取苗爪一起从钵盘内往外运动,形成段取苗轨迹。段轨迹为取苗爪持苗轨迹;段轨迹为推苗轨迹,即在取苗爪到达点之前时,在推苗爪的作用下,取苗爪张开,钵苗落入相对应的植苗器中,段轨迹为回程阶段,即取苗爪在释放钵苗后保持张开的状态,准备下一次取苗;以上5段轨迹组成蔬菜钵苗取苗所要求的整个取苗与推苗工作轨迹5-8。在完整的取苗过程中,包括取苗、推苗、复位三个过程,在满足取苗轨迹的情况下,尚需一个能实现集取苗与推苗为一体的末端执行器,要求取苗末端执行器在取苗位置时取苗爪能够夹紧钵苗并能将钵苗从钵苗盘中取出;在推苗位置时要求取苗爪张开,实现实现向下推出钵苗,使得钵苗落入相应的植苗器中;在复位过程中,要求推苗爪在推完苗后要继续保持推苗时的位置,使得左右取苗针继续保持张开,以便下一次的顺利取苗,这需要在该机构中加一个锁止弧装置即可。而该取苗机构中必需有能实现夹紧钵苗与推出钵苗的装置,本文考虑用取苗臂部件实现该功能,如图所示,机构的上取苗臂12和下取苗臂18结构相同,均包括弹簧26、拨叉27、凸轮28、推苗杆29、左、右取苗针30、24、取苗臂壳体31、“V”形推苗爪32和弹簧座33;凸轮28固接在齿轮箱7的外侧上,弹簧座33与推苗杆29固接,弹簧26套在在推苗杆29中,拨叉27安装在取苗臂壳体31的轴上,拨叉27的一端压在弹簧座33中,拨叉27的另一端能与凸轮28相接触;推苗时,凸轮28拨动拨叉27转动,弹簧26在拨叉27的作用下被弹簧座33压缩,同时拨叉27也推动与弹簧座33固接的推苗杆29向下运动,弹簧座33带动与推苗杆29固接的“V”形推苗爪32一起向下运动,使得左、右取苗针30、张开,实现落苗与推苗,同时为下一次取苗做准备;夹苗时,拨叉27和凸轮28脱离接触,弹簧26复位,复位过程中弹簧26推动弹簧座33向上运动,此时与弹簧座33固接的推苗杆29也向上运动,弹簧座33带动与推苗杆29固接的“V”形推苗爪32一起向上运动,使得左、右取苗针30、夹紧,实现夹苗。1、11行星轴 2、10行星椭圆齿轮 3、9中间轴 4、8中间椭圆齿轮 5中心轴 6不完全非圆齿轮7右箱体 15凸锁止弧 14、16凹锁止弧 12、18取苗臂 17机架 19链轮 23钵苗盘图3.2 椭圆-不完全非圆齿轮传动的蔬菜钵苗取苗机构装配图26弹簧 27拨叉 28凸轮 29推苗杆 30、左右取苗针 31壳体 32推苗爪 33弹簧座 34顶盖 35定位板 36密封塞 37取苗针轴 38拨叉轴 图3.3 取苗臂结构图6弹簧 27拨叉 28凸轮 29推苗杆 30、左右取苗针 32推苗爪 33弹簧座 图3.4 取苗臂机构简图3.1.2 基于Pro/ E设计平台的三维CAD设计目前,随着计算机辅助技术的不断发展,三维造型软件功能不断完善,传统的二维设计正逐渐被三维实体设计所代替。Pro /Engineer是美国PTC公司于1988年开发的参数化设计系统,是一套由设计至生产的机械自动化的三维实体模型(3DS)设计软件,它不仅具有CAD 的强大功能,同时还具有CAE 和CAM 的功能,广泛应用于工业设计、机械设计、模具设计、机构分析、有限元分析、加工制造及关系数据库管理等领域。而且能同时支持针对同一产品进行同步设计,具有单一数据库、全相关性、以特征为基础的参数式模型和尺寸参数化等优点。采用三维CAD 设计的产品,是和实物完全相同的数字产品,零部件之间的干涉一目了然,Pro/Engineer 软件能计算零部件之间的干涉和体积,把错误消灭在设计阶段9。运用Pro/ E三维设计平台,通过对特征工具的操作,避免高级语言的复杂编程,所开发设计出来的三指三关节的欠驱动三指手,便于研究人员通过对界面特征工具的操作,生成欠驱动三指手实体模型,甚至输出所需要的工程图及相关分析数据。这样既可辅助研究人员完成其设计构思、减轻劳动强度、提高效率和精度、改善视觉的立体效果,并可有效地缩短研制周期,提高设计制造的成功率;也为后续的3D运动学仿真分析奠定了基础。ADAMS,是美国MDI公司开发的虚拟样机分析软件。目前,ADAMS已经被全世界各行各业的数百家主要制造商采用。DAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格朗日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。ADAMS软件的仿真可用于预测机械系统的性能、运动范围、碰撞检测、峰值载荷以及计算有限元的输入载荷等。3.1.3 基于Pro/ E设计平台的运动学分析运动仿真是机构设计的一个重要内容, 在Pro /E的Mechanism模块中(ADAMS),通过对机构添加运动副、驱动器使其运动起来,来实现机构的运动仿真。通过仿真技术可以在进行整体设计和零件设计后, 对各种零件进行装配后模拟机构的运动, 从而检查机构的运动是否达到设计的要求, 可以检查机构运动中各种运动构件之间是否发生干涉,实现机构的设计与运动轨迹校核。同时, 可直接分析各运动副与构件在某一时刻的位置、运动量以及各运动副之间的相互运动关系及关键部件的受力情况。在Pro /E或ADAMS环境下进行机构的运动仿真分析,不需要复杂的数学建模、也不需要复杂的计算机语言编程,而是以实体模型为基础,集设计与运动分析于一体,实现产品设计、分析的参数化和全相关,反映机构的真实运动情况。3.2 可行性分析1)通过大学四年的基础和专业课程的学习,已经掌握了较强的专业技能。2)通过前期的论文写作实践,已经积累了一定的论文写作经验。3)通过前一段时间的资料收集和查阅,已基本掌握了移栽机自动取苗装置的内容以及设计方法。4)学校图书馆的数据库可提供大量丰富的相关文献。5)在经验丰富的指导老师的帮助和指引下,有能力在规定的时间内完成规定的任务。3.3 预期研究成果完成自动移栽机取苗机构的设计,完成三维建模,保证设计能较好的满足设计要求。 研究工作计划起止时间内容2013.01.072013.01.12调研、信息汇总,文献查阅分析2013.01.132013.01.30外文翻译、文献综述、开题报告,并熟悉理论力学、机械原理等相关知识2013.01.31 2013.03.01提交开题报告、文献综述及外文翻译2013.03.022013.03.08开题答辩2013.03.092013.03.16蔬菜移栽机整体方案设计2013.03.172013.03.30取苗机构设计及零部件设计2013.03.312013.04.11三维CAD建模、装配2013.04.122013.04.24三维运动学分析2013.04.252013.05.02结构改进设计及毕业论文撰写2013.05.032013.05.10完成并提交毕业论文2013.05.112013.05.24整理材料准备答辩2013.05.252013.05.29论文答辩参考文献1 我国蔬菜育苗移栽机械化的现状与发展方向,/2007/3-5/94922.htm2 陈殿奎.蔬菜机械化育苗的现状与展望J农业工程学报,1990,(12):20253 G. V. Prasanna Kumar ; H. RahemanInternational Journal of Vegetable Science,Vol.14,No.3,232-2554 Konosuke TSUGA. Development of fully automatic vegetable transplanter.JARQ 34, 2128 (2000)5 王君玲,高玉芝,李成华.蔬菜移栽生产机械化现状与发展方向.农机化研究,2004(02):22286 张波屏.现代种植机械工程M北京:机械工业出版社,19977 封 俊论我国早地栽植机械的开发前景与方向J中国农机化,2000,(4):12138 俞高红,陈志威,赵匀,孙良,叶秉良椭圆一不完全非圆齿轮行星系蔬菜钵苗取苗机构的研究DoI:10390l,JME2012130329 毛君, 毕长飞.基于Pro/Engineer 采煤机的三维动态仿真与优化设计J.煤矿机械,2006,27(6) : 990-994. 外 文 翻 译单行蔬菜钵体苗自动移栽机的设计取苗装置设计原文1:Vegetable Transplanters for Use in Developing CountriesA Review译文1:蔬菜移栽机在发展中国家的展望原文2:Development of a mechanism for transplanting rice seedlings译文2:移栽水稻幼苗机制和发展原文1:Developing countries contribute 72% of the total vegetable production in the world. The transplanting operation is one of the most labor intensive in vegetable production. It is largely done by hand in India and most developing countries and incurs large investments in labor, time,and cost. This article presents the details of construction of vegetable transplanters in addition to recent advances in their development.Performance of transplanters under actual field conditions is discussed.Traditional Methods of Transplanting Vegetable SeedlingsFerminger (1953) reported that in India, for small-scale vegetable gardening, holes of 60 cm diameter and 30 cm deep are manually dug in the field at desired spacings. The soil is mixed with farmyard manure, bone meal,and wood ashes. The hole is then filled to a depth of 1520 cm and packed. A seedling is placed in the middle of the hole and topsoil is filled around the seedling, compacted, firmed, and soaked with water. A shelter is built to shade the seedling under dry weather conditions. This method does not require any field preparation. A shovel or spade is the only implement used.Classification of Vegetable Transplanters and SeedlingsTransplanters are designed based on seedling type to be used. The semiautomatic transplanters can be used for almost all types of seedlings (Table 1). The bare root seedlings are obtained by pulling seedlings directly from nursery beds. The soil block seedlings are obtained by sowing of seeds in moist soil cubes made by mixing soil, peat, compost,and sand (Press, 2001). The cell mold seedlings are grown in flexible plastic (Tsuga, 2000) or heavy-duty injection-molded trays(Horticultural Supplies Co., Mumbai, India) with cells to fill with the soil mix and sow the seed. Trays can contain 128, 200, or 288 cells, in which the arrangement of cells is 8 16, 10 20, and 12 24, respectively(Tsuga, 2000). The Horticultural Supplies Co. tray has five sections,each with 30 or 40 cells, supported by an outer tray, which can hold 150 or 200 seedlings. The shape of the cell is an inverted truncated pyramid. Another method for transplant production is the paper pot,generally made from recycled paper. Paper pots provide an individual area for each seed to germinate and the plant to develop (Indian Institute of Horticultural Research IIHR, 2006). A total of 128 or 200 pots can be placed on a tray in 8 8 or 10 10 arrangements (Tsuga,2000).Semiautomatic and fully automatic transplanters can be used for plantingcell mold and paper potproduced seedlings. The linked paper pot,or a chain of pots prepared by connecting a series of paper pots, is made by joining two-ply sheets of paper with water-resistant adhesive(Nambu and Tanimura, 1992). They do not require a tray for holding seedlings but require an arrangement to separate the chain of pots into individuals before feeding them to the planting unit. Linked paper pots are used only with fully automatic transplanters.The walking-type semiautomatic transplanters are either self-propelled or hand tractoroperated machines. They are rare because the operator has to concentrate on the operation of the machine and feeding the seedlings.Riding-type two-row or three-row semiautomatic transplanters are tractor mounted or tractor pulled machines, whereas those that are used with more rows are tractor pulled. The walking-type automatic transplanters are self-propelled machines for sowing a maximum of four rows. Ridingtype automatic transplanters are either self-propelled (up to four rows) or tractor pulled (up to eight rows). Further, Marr (1994) described types of transplanters called punch planters (automatic) and water-wheel planters (semiautomatic). The punch planters transplant through plastic mulches by puncturing the mulch and the soil and setting the seedling into the holes. The water-wheel planters are similar to the punch planters with the addition of a large tank filled with water or fertilizer solution. As the hole is formed for the transplant, a portion of the solution is injected into the transplant hole. Seedlings are hand-set into the watered hole by operators riding low near the ground (Model 1600 of Robert Marvel Plastic Mulch, Annville, Pa.). As the seedling is pushed in, mud from the bottom comes up along the sides and covers the top to complete the transplanting operation. Munilla and Shaw (1987) described a dibbling transplanter in which holes are made in the soil and seedlings are planted in the holes.Seedling Box or Tray HolderA seedling box is provided on semiautomatic transplanters to store bare root seedlings for feeding to the planting unit. It is rectangular in cross section and is open at the top. Long rectangular seedling boxes are used in transplanters (Model 2000, Mechanical Transplanter Co., Holland, Mich.)used for planting long seedlings, in which a conveyor belt is provided,which can be driven by foot action. Carrousel tray holders (Figure 1) can also be used in transplanters (Mechanical Transplanter Co.s models 5000,5000W, 5000WD, 4000, and 6000) that use cell mold seedlings. Each tray holder stores four to six trays, each carrying 200 cell mold seedlings. In automatic transplanters, the tray is kept at a place with its orientation suitable for the pick-up device to remove seedlings from trays. It also has a mechanism to move trays forward as seedlings are removed from the tray.Recent advances in the design of vegetable transplanters.Apart from the essential components for efficient planting of vegetable seedlings, vegetable transplanters are provided with systems for maintaining the accuracy, precision, and effectiveness in planting seedlings with minimum human intervention. Researchers have reported recent developments in automatic vegetable transplanter in the United States (Parish,2005), Italy, Japan, Australia, and England (Labowsky, 2001). Robotic transplanters have been developed (Brewer, 1994; Kim et al., 1995;Ryu et al., 2001; Sakaue, 1992; Tai et al., 1994), and Figure 7 presents a schematic diagram for this type of transplanter developed by Ryu et al.(2001). It has a CCD camera, which identifies empty cells in high-density plug trays, passes this information to the computer, which feeds it to the manipulator. The manipulator actuates the end-effecter to pick up only the good-quality seedlings to the low-density growing trays. The labor and time involved in discarding the poor-quality seedlings are fully FIGURE 7. Schematics of the robotic transplanter: (a) the front view of the manipulator (b) the side view of the manipulator, the tray moving system,and the vision system (Ryu et al., 2001). Reprinted with permission of the Institute of Agricultural Engineers, UK.Further, a camera linked to a computer feeds the information on the leaf direction of the good-quality seedlings and the manipulator accordingly orients the end-effecter to pick up the seedlings. The lowdensity growing trays used for transplanting will have 100% good-quality seedlings without any human intervention. In machines employing the belt conveyortype planting unit (Series TP Transplanter of FMC Food Tech Agricultural Machinery Division, Collecchio-Parma, Italy), faulty seedlings are separated using a machine vision system. It is claimed that the mechanism has been developed to compensate for the deficit caused by removing faulty seedlings by momentarily increasing the feed rate of seedlings from the tray (Thijssen, 2000). Photo-cells are being used to detect the gaps and replace them with new seedlings (Lannen Plant Systems, Victoria,Australia).The desired plant spacing in the field can be entered into the computer and encoders are provided to read the distance traveled along the ground and plant the seedlings within 1-mm accuracy. The seedling planting depth can be electronically controlled. This is useful particularly in lettuce, where if seedlings are planted exactly level with the top of the soil,leaf rot will be minimized and development of lettuce into an oval rather than round shape will be reduced. The pressure applied by the soil compacting device can be controlled depending on the type of soil and its condition. Seedlings can be automatically planted at the speed of 2 seedlingss1 (Model G4 vegetable transplanter, Williames Hi-tech International Pvt. Ltd., Victoria,Australia). The machine can carry 35 trays with 260 seedlings each, eliminating time lost for loading of seedling trays by at least 1 h. A transplanter with the ability to adjust the seedling pick-up unit based on size and configuration of trays has been developed (Sena, 2006).The field performance of vegetable transplanters depends on the feeding rate of the seedling pick-up unit (for automatic transplanters), planting rate of the seedling planting unit, spacing between seedlings in a row, row spacing, and achievable optimum speed of operation to minimize missed plantings in addition to field, crop, and other operating parameters. Most researchers and manufacturers have reported data on planting rate and seedling feed rate rather than on field performance of machines. CIAE(2004) reported forward speed as 0.9 kmh1 and field capacity (field area plantedh1) as 0.1 hah1 for planting tomato at a 60-cm row spacing and 45-cm in-row plant spacing using a tractor-drawn two-row semiautomatic transplanter with pocket-type planting unit. The field performance of a two-row tractor-mounted semiautomatic transplanter with pocket-type planting unit developed by PAU (2004) is presented in Table 4. The suitable forward speed of operation for obtaining a minimum of missed plantings was found to be from 0.9 to 1.1 kmh1 for various crops. Increasing speed increased the percentage of missed plantings and necessitates that two laborers feed the single row to maintain the percentage missing within acceptable limits. Holland Transplater Co.s models 1500, FWD 1500, and 1600, and Mechanical Transplanter Co.s models 1000, 1000B-3,1000 2, 1980 nursery transplanter, 2000, and 22C have the provision for two laborers to feed the single row. Marr (1994) opined that the transplanter has to be operated at a speed that allows careful placement and attention to problems that develop. Operators should not be so involved in placing plants in the machine that they cannot watch for problems that develop. A rotary cuptype planting unit on a semiautomatic transplanter allowed for higher forward speed than that of a pocket-type planting unit(Labowsky, 2001). An average forward speed of 1.4 kmh1 and field capacity of 0.14 hah1 for planting tomato, cauliflower, chile peppers,and eggplant using a three-row semiautomatic transplanter with rotary cuptype planting unit has been reported (Tamil Nadu Agricultural University TNAU, 2004). For reasonable seedling spacing, the feed rate clearly limits the maximum allowable travel speed of the transplanting machine (Srivastava et al., 2006). Minoru Industrial Co. Ltd. (Okayama,Japan) claims that its two-row self-propelled walking-type automatic vegetable transplanter can plant 0.2 hah1. Tsuga (2000) found that the two-row fully automatic transplanter was able transplant 0.11 hah1 while operating at a speed of 1.21.4 kmh1 for cabbage at a plant spacing of 30 cm and an in-row spacing of 60 cm. There was less than 3% missed plantings. Kim et al. (2001) reported that the field capacity of a prototype two-row automatic transplanter for cabbage of 0.1 hah1 with 3.5% missed plantings.Srivastava et al. (2006) opined that an important performance criterion for transplanters is that seedlings must be oriented properly and in good contact with the soil. A successful planting has been defined as having seedlings inclined less than 30 from the vertical (Munilla and Shaw, 1987).作者:G. V. Prasanna Kumar ; H. Raheman出处:International Journal of Vegetable Science,Vol.14,No.3,232-255译文1:发展中国家占世界蔬菜总生产的72%。移栽技术是一种最密集型的蔬菜生产劳动。它主要是在印度手工完成和大多数发展中国家把大量的资源投资在人力、时间、和成本。本文介绍了蔬菜移栽机,除了最新的一些进展和研究发现,是在移栽机实现其特定性能条件下讨论。传统方法的移植蔬菜种苗。Ferminger(1953)报道说,在印度对于小规模的蔬菜园种植,孔的直径是60厘米,深30厘米是手工挖场在理想状态下的空隙。土壤是混合堆肥,骨粉,和木灰。这个洞是的深度15 - 20厘米。一个幼苗被放置在中间孔上和表层周围被土所包围,围绕着种苗,将其压实,压牢固 ,再进行灌水。一个理想适当的环境是建立树荫下的幼苗干旱的天气条件。这种方法不需要任何现场准备,一个铲或锄头仅仅使用一种工具。蔬菜的分类移栽机和秧苗。印度孟买的一家园艺有限公司,对此进行了开发研究,其让细胞充满土壤与之充分混合,随后播下种子。试验中锁使用的托盘可以容载128、200或288个细胞,再进行整齐排列,将细胞排列到816、1020。2424几种排列托盘中(Tsuga,2000)。 园艺用品有限公司的托盘有五个部分,每个有30或40个细胞,由一个外托盘盛载,可以容纳150或200颗蔬菜苗。而细胞的形状是一个反向的被截断的金字塔造型。另一个方法是移植生产,一般用可再生环保纸。环保纸盆提供一个个人面积为每个种子发芽和植物开发所需要的空间(印度理工学院园艺研究IIHR,2006)。总共有128或200盆可以被放置在一个88或1010的托盘中整齐排列 (Tsuga,2000)。而半自动和全自动移栽机可以用于种植电池模具和纸罐生产的种苗。链接的纸盆,或一连串的准备通过连接一个系列的纸盆,是由通过加入两层的纸张再用防水胶加工(Nambu和Tanimura,1992)。 他们虽然不需要一个托盘来排列但是他们需要安排一个人在喂食他们种植单位前使幼苗分离链形成,而环保纸盆只能使用全自动移栽机。步行式半自动移栽机一种是手推式操作机器,另一种是装载于手扶式拖拉机上的操作机器。它们并不常见,这是因为经营者专注于机器的操作和喂苗。还有一种骑式双排涡轮和由三行组成的半自动移栽机是在拖拉机上安装或拖拉机拉动的机器,而那些使用更多的是由拖拉机来提供拉动力。蔬菜移栽机的步行式和自动式都是自航机械,播种最多4行。Ridingtype自动移栽机要么自航(最多4行)或拖拉机拉(8行)。进一步,马尔(1994)所描述的移栽机类型称为穿孔种植者(自动)和水轮播种机(半自动)。冲头通过塑料薄膜种植移植由穿孔薄膜与土壤设置幼苗进入洞口。种植园主和水轮相似的穿孔种植园还添加了一个大水箱并将其注满水或肥料溶液。随着孔形成的移植,一部分营养液和肥料注入移植孔。进浇苗洞并手工精制,运营商地面附近骑低(型号1600的罗伯特奇迹塑料覆盖物,Annville,Pa。)。 随着秧苗的推进,泥浆从底部出现并沿两侧和顶部覆盖同时完成移植操作。Munilla和萧伯纳(1987)描述了一种穴播插秧机在这洞是土壤和苗种植的洞。苗箱和托盘架。一株幼苗盒子是提供半自动移栽机存储的根幼苗喂种植单位。它呈矩形其横截面和是开在顶部。长矩形育苗盒用于移栽机(型号2000,机械插秧机有限公司,荷兰,米奇。)用于种植长苗,用传送带进行传送,这可以由人力来代替。旋转托盘也可用于移栽机(机械插秧机公司的模型5000,5000 w,wd 5000、4000和6000),使用电池模具苗。每个托盘持有人有4到6个托盘,每个托盘载有200左右细胞型苗。在自动移栽机中托盘是保存在一个地方,其取苗机构为传感器装置取出幼苗到托盘。它也有一个机制向前移动托盘苗移开从托盘。现行设计的最新进展蔬菜移栽机。除了基本组件为高效种植的蔬菜苗,蔬菜移栽机提供系统维护的准确性、有效性和精准性,在种植幼苗与最小的人工干预。研究人员报道最近的自动蔬菜插秧机进展是在美国的 (教区,2005)、意大利、日本、澳大利亚和英国(Labowsky,2001)。机器人移栽机已经开发(布鲁尔,1994;金et al。,1995;Ryu et al。,2001;Sakaue,1992;大et al,1994年),并提出了原理图的这种类型的插秧机Ryu开发的et al。(2001)。 它有一个CCD摄像机,它能识别空细胞高密度塞托盘,并将这些信息传送给计算机,让它来代替机械手。机械手的促动端区只捡优质的种苗到低密度增长托盘。劳动和时间参与完全丢弃劣质苗。英国制造的电路图的机器人插秧机,其机械手,托盘运动系统,和视觉系统(Ryu et al。,2001)。进一步的,一个相机与电脑提要信息方向和机械手的优质种苗因此主导的端区捡起苗。低密度种苗的日益增长的托盘用于移植会有100%的高质量苗,无需人工干预。在机器使用皮带输送机来传送种植单位(TP插秧机的FMC食品系列科技农业机械部门,Collecchio-Parma、意大利),故障苗是分开使用机器的视觉系统。它声称机制已被开发,以弥补种苗劣质的幼苗,瞬间增加取苗量,种苗从托盘中取出(Thijssen,2000)。 细胞被用来检测差距,代之以新的苗(Lannen植物系统,维多利亚,澳大利亚)。所需的植物间距在字段可以输入到计算机和编码器提供阅读的距离沿地面和植物的幼苗在1毫米的精度。苗木种植深度可以电子控制。这是很有用,特别是在生菜,如果苗种植完全顶部的水平上土,叶腐病将会最小化和发展生菜成椭圆形而非圆的形状将减少。压力由土壤压实的应用设备可以控制取决于类型的土壤和条件。幼苗可以自动种植幼苗的速度21(模型s G4吗蔬菜插秧机,Williames高科技国际经纪有限公司,维多利亚,澳大利亚)。这台机器可以携带260苗35托盘每,消除失去时间来装载苗盘至少1 h。一个插秧机与适应能力的幼苗拾音器单位根据大小和配置托盘已经发达(塞纳,2006)。蔬菜移栽机现场性能取决于幼苗拾取单元的摄食率(自动移栽机的插秧机),种植率,幼苗在一排之间的间距,行间距,并能达到的最佳的运行速度,减少差错率,错过了种植作物,和其他操作参数。大多数研究人员和制造商已经报道的种植率和幼苗的进给速率,而不是在机器工作现场的性能数据。中国原子能科学研究院(2004)报道的前进速度为0.9公里和田间持水量(田间种植面积)为0.1公顷以行距60厘米和45厘米使用拖拉机牵引两行半自动移栽机袋式栽培行株距种植番茄的单位。一二行拖拉机田间表现安装半自动移栽机袋式栽培单元由加索尔(2004)给出了。为获得最小漏种植手术合适的前进速度是从0.9到1.1公里多种作物。增加的速度增长百分比,错过了种植需要两个工人保持在可接受的范围内的饲料比例失调的单排。荷兰栽植机有限的模型1500,前进1500,和1600,和机械插秧机有限的模型1000b-31000 1000,2,1980和2000,苗木移栽机,有两个工人养活22c单排的规定。马尔(1994)认为插秧机必须在速度进给上给出合理适当的数值,需要进行精心安排和注意问题的研究探讨,开发操作。转杯型种植单元在半自动移栽机允许更高的速度比一个袖珍型种植单位(labowsky,2001)。一个正向平均速度为1.4公里和田种植西红柿,花椰菜,辣椒0.14公顷的容量,并使用一三行半自动移栽机转杯型种植单位茄子(泰米尔纳德邦农业大学 TNAU ,2004)。合理的株距,进给速度合理,有明显界限的插秧机允许的最大行驶速度(Srivastava等人。,2006)。稔实业有限公司(冈山,日本)声称其两行自走式自动蔬菜移栽机可以种植0.2公顷。长苞铁杉(2000)发现,两行全自动移栽机可以移植0.11公顷而在速度为1.2白菜1.4公里在30厘米, 60厘米行株距株距操作,有小于3%的种苗错过了播种。基姆等人(2001)报道,用3.5%的0.1公顷的白菜原型两排自动插秧机场容量错过了播种。Srivastava等人(2006)认为,插秧机一个重要的性能指标是幼苗必须正确定向并且与土壤接触良好。一个成功的种植已被定义为幼苗倾斜小于30(穆尼利亚和肖,1987)。原文2:Transplanting of seedlings is a labor intensive operation in the cultivation of rice. It is also a skilled job and involves working with a stooping posture in a puddled field. There exists a need to mechanize this operation. For this purpose the design of a mechanism was carried out following the method of analytical synthesis. A planar four-bar linkage with coupler extension was selected as the basic design. The path generated by the mechanism was plotted on a computer screen. By varying the dimensions of various links in the mechanism different paths of output motion of the coupler point were obtained. The potential link dimensions were identified based on the suitability of the path for picking, conveying and planting of seedlings as well as the return motion. A four-row self-propelled transplanter using the above mechanism and an optimized-planting finger was then developed and tested. The machine transplanting system was found to be technically viable.India is predominantly an agricultural country with rice as one of its main food crop. It produces about 80 million tons rice annually, which is about 22% of the world rice production.Culturally, transplanting of young seedlings of 2035 days age in water-inundated field is preferred over direct seeding. The former leads to better yield due to better crop management practices that are possible in a transplanted crop. The operation of transplanting requires large amount of manpower (about 400 man-hour/ha) and the task is very laborious involving working in a stooping posture and moving in muddy field. Hence, this is considered as an activity that needs mechanization. Mechanization of transplanting facilitates mechanization of subsequent activities also in the production of the crop. The machines that are already successful in Japan and Korea could not be adopted in India because of economic cost constraints and due to the prevailing cultural practices of this country.Design of planting mechanisms used in power operated transplanters.Anon. states that most of the planting devices of power operated transplanters can be classified as crank and rocker mechanisms of four-bar linkage. A planting finger, which is a part of the coupler link of the mechanism, separates the seedlings from the seedling tray and places them in the soil. The curve traced by the planting finger may have an influence on the stability of the planted seedlings. The kinematic analysis of the planting mechanisms is considered essential for an understanding of its operation and its further improvements.Design of mechanismErdman and Sandor state most mechanism tasks require a single input to be transferred to a single output. Therefore, single-degree-of-freedom mechanisms are the forms used most frequently.Shigley states that Grublers criterion is concerned with the numbe r of links in the mechanism and with the numbe r and kinds of kinematic pairs. It can be used for determining the degree of freedom of a mechanism. Erdman and Sandor state that analysis techniques can be used to replace costly and time consuming building and testing of physical prototypes in a trial and error design process. Analysis techniques generally form a basic part of most synthesis methods. Norton states that the four-bar linkage should be among the first solutions to motion control problems to be investigated. The fewest parts that can do the job will usually give the least expensive and most reliable solution. Norton states that the Grashof condition can be used as a very simple relationship, which predicts the behavior of a four-bar linkage, based on the link lengths. Zimmerman states that a four-bar mechanism is physically impossible if one of the links has a length greater than the sum of the other three. Hirschhorn states that in a four-bar linkage distinct types of mechanisms could be obtained by inversion. A crank-rocker mechanism is obtained by fixing one of the two links paired with the shortest link. Paul suggested that NewtonRaphson method could used be used to solve the non-linear equations developed for solving the four-bar linkage position problem. Zimmerman states that one basic mechanism design problem for which the four-bar chain can provide solutions is that of finding a point of the coupler of a four-bar mechanism, which describes a path closely approximating the desired one.In a mechanical transplanter the finger follow a desired path of motion. A planar four-bar linkage with all revolute pairs is chosen, as this is very simple, a mechanism made of that may be E. Vareed Thomas / Mechanism and Machine Theory37 (2002) 395410 397 easy to maintain and may cost less to manufacture. The input motion is applied to the crank so that the motion is continuous and rotary. The output motion follow a suitable path in order to meet the requirements of a transplanter specified below. The mechanism should have one degree of freedom and a coupler point that is capable of making a loop may be incorporated. The planting finger will be attached at the coupler point.The dimensions of four links in the four-bar loop, orientation of the fixed link, length of the coupler extension and orientation angle of the coupler extension are to be decided for the design.Since these values could not be synthesized directly it was decided to examine various trial values for the above parameters and study the suitability of the path generated by such mechanism for the purpose of transplanting. The above parameters were changed systematically using arbitrarily set ranges. During the present investigation around 0.23 million linkage designs were examined.The choices of link dimensions were made following a method of analysis and selection. The link dimensions were varied as stated above
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:蔬菜钵体苗自动移栽机取苗装置设计含开题、proe三维及24张CAD图
链接地址:https://www.renrendoc.com/p-82960004.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!