顶杆-26.dwg
顶杆-26.dwg

瓶塞、塑料端盖注射模具设计-注塑模含20张CAD图

收藏

资源目录
跳过导航链接。
压缩包内文档预览:
预览图
编号:82961987    类型:共享资源    大小:1.91MB    格式:ZIP    上传时间:2020-06-01 上传人:QQ14****9609 IP属地:陕西
45
积分
关 键 词:
瓶塞 塑料 注射 模具设计 注塑 20 CAD
资源描述:
瓶塞、塑料端盖注射模具设计-注塑模含20张CAD图,瓶塞,塑料,注射,模具设计,注塑,20,CAD
内容简介:
中期报告题目:塑料端盖注射模设计 系 别 机电信息系 专 业 机械设计制造及其自动化 班 级 姓 名 学 号 导 师 20XX年3 月16 日1.设计(论文)进展状况开题报告之后,在老师指导下主要完成了以下工作:(1)查找与阅读论文相关的合适的英文文献,对其进行翻译并完成;(2)根据所给塑件的材料对其进行了分析,查阅塑件注塑工艺的参数;料筒温度: 后部190210中部200220前部210230喷嘴200210模具温度2040注射压力6080MPa 注射周期3050s(3)根据中小批量生产采用一模两腔的形式;(4)初步选择注射机XS-ZY-125,并查阅此注射机的工艺参数,如表1所示; 表1 XS-ZY-125的工艺参数注射装置螺杆直径/42理论注射量/125注射压力/120锁模装置锁模力/900拉杆间距/260*290模板行程/300模具最小厚度/200模具最大厚度/300定位孔直径/100定位孔深/30喷嘴口直径/4喷嘴球半径/12顶出行程/100顶出力/60(5)计算单件塑件的体积和质量,计算塑件浇注系统在分型面上的投影面积,计算锁模力,并校核所选的注射机是否满足要求;(6)根据分型面的选择原则确定分型面,塑件底面,既是最大截面处而且对粗糙度的要求比较低;(7)浇注系统的设计:为了便于流道凝料的脱出,主流道设计成圆锥形,分流道采用梯形截面加工工艺性好,且塑料熔体的热量散失流动阻力均不大,由于直接浇口会使塑件上有明显的浇口的痕迹,侧浇口易产生熔接痕,所以采用点浇口,如图2所示; 图1 塑件三维图 图2 点浇口(8)侧向抽芯机构采用斜导柱形式,由于塑件有内凹,必须进行内抽,采用斜顶杆,边顶边抽;(9)完成了模具总装配草图的设计,如图3、图4所示。 图3 模具总装配图草图图4 模具总装配图草图2.存在问题及解决措施到目前为止,在毕业设计中遇到问题如下:(1) 在对所选注射机校核时,计算锁模力时对塑件在分型面上的投影面积没理解;(2) 对浇注系统凝料的体积的计算比较模糊;(3) 塑件圆周分布上有侧凹,内侧也有侧凹,只知道设计时应用侧抽芯结构,并没有真正理解在结构装配图中怎么安排;(4) 没有设计冷却系统,对论文所涉及的知识认识得不够深刻,所以对命题的探讨不过深入。导致上述问题主要有两个原因,一是研究不够深入,二是撰写不够严密。针对这两个原因,解决方法有:(1)对于论文所涉及的知识多理解及学习,多查阅相关书籍;(2)对于写作过程中遇到的具体难题要多向指导老师请求援助;(3)在设计遇到问题时多和同学交流,一起探讨,共同进步;(4)自己也要对模具设计方面的知识多了解,并深刻理解,在现有的基础上提高自己,完善自己,更好地完成设计任务。3.后期工作安排在此后期的任务,主要是:(1)修改完善模具的总装配图;(2)根据设计计算的尺寸及所选的机构画出装配图;(3)完成模具零件的选材及零件图的绘制;(4)编写设计说明书及校核图纸,交给导师查阅;(5)准备答辩。 指导教师签字: 年 月 日开题报告题目:塑料端盖注射模具设计系 别 机电信息系 专 业 机械设计制造及其自动化 班 级 姓 名 学 号 导 师 20XX年 12 月24 日1.毕业设计(论文)综述(题目背景、研究意义及国内外相关研究情况)1.1题目背景 现代工业的飞速发展为素有“工业之母”美誉的模具工业带来前所未有的发展机遇,而模具材料的应用在模具制造中起举足轻重的作用。塑料,作为重要的模具材料之一,随着家电、汽车、电子、电器、通讯产品的迅猛发展而得到更为广泛的应用。塑料模具,成为时下模具品种之“关键词”。在此背景下,如何更深入地认识塑料模具的发展状况并把握其市场走向,成为重要课题。随着中国汽车、家电、电子通讯、各种建材的迅速发展与国民经济的快速增长,在未来的模具市场中,塑料模具在模具总量中的比例将进一步提高,其发展速度将快于其他模具种类,塑料模具的加工与生产将形成遍地开花之势。我国塑模工业从起步到现在,有了很大发展,水平有了很大提高,总体趋势平稳向上,在未来的模具市场中,塑料模具发展速度将高于其它模具,在模具行业中的比例竟逐步提高。此次毕业设计对塑料端盖的设计可以更好的了解模具的设计及相关知识,了解其发展前景对自己以后从事工作奠定基础。1.2研究意义随着模具制造行业的发展,许多企业开始追求提高产品质量及生产一效率,缩短设计周期及制造周期,降低生产成本,最大限度地提高模具制造业的应变能力等目标。新兴的模具设计制造技术很大程度上实现了企业的愿望。近年来,PRO/E技术的应用越来越普遍和深入, 大大缩短了模具设计周期, 提高了制模质量和复杂模具的制造能力。塑料的应用越来越广泛了,它的结构设计及质量也显得非常重要的。1.3国内外相关情况模具工业是制造业中的一项基础产业,是技术成果转化的基础,同时本身又是高新技术产业的重要领域,在欧美等工业发达国家被称为“点铁成金”的“磁力工业”;美国工业界认为“模具工业是美国工业的基石”;德国则认为是所有工业中的“关键工业”;日本模具协会也认为“模具是促进社会繁荣富裕的动力”,同时也是“整个工业发展的秘密”,是“进入富裕社会的原动力”。日本模具产业年产值达到13000亿日元,远远超过日本机床总产值9000亿日元。如今,世界模具工业的发展甚至己超过了新兴的电子工业。在模具工业的总产值中,冲压模具约占50%,塑料模具约占33%,压铸模具约占6%,其它各类模具约占11%。未来我国的模具将呈现十大发展趋势:一是模具日趋大型化。二是模具的精度越来越高。三是多功能复合模具将进一步发展。新型多功能复合模具除了冲压成型零件外还担负叠压、攻丝、铆接和锁紧等组装任务对钢材的性能要求也越来越高。四是热流道模具在塑料模具中的比重逐渐提高。五是随着塑料成型工艺的不断改进与发展气辅模具及适应高压注射成型等工艺的模具将随之发展。六是标准件的应用将日渐广泛。七是快速经济模具的前景十分广阔。八是随着车辆和电机等产品向轻量化发展压铸模的比例将不断提高,同时对压铸模的寿命和复杂程度也将提出越来越高的要求。九是以塑代钢、以塑代木的进程进一步加快塑料模具的比例将不断增大。十是模具技术含量将不断提高中、高档模具比例将不断增大,这也是产品结构调整所导致模具市场走势的变化。2.本课题研究的主要内容和拟采用的研究方案、研究方法或措施2.1研究内容本设计主要是以工程实际零件塑料端盖,该塑件为复杂件,圆周分布有侧凹,内侧有侧凹,必须用侧抽芯机构完成,设计难度较大,需要综合运用所学知识完成模具结构设计。2.2研究方案2.2.1分型面的选择首先确定模具的开模方向为塑件的轴线方向,根据分型面应选择在塑件外的最大轮廓处原则,则此塑件的分型面选在端盖的下底面处。型腔布局采用一模四腔,主要用于生产批量较大的场合或小型塑件的成型。2.2.2方案的选择 根据塑件工艺的分析,PA1010(尼龙1010)塑料是半透明、轻而硬、表面光亮的结晶形白色或微黄色颗粒,相对密度和吸水性比尼龙6和尼龙66低,机械强度高,冲击韧性、耐磨性和自润滑性好,耐寒性比尼龙6好,熔体流动性好,易于成型加工,但熔体温度范围较窄,高于100时长期与氧接触会逐渐呈现黄褐色,且机械强度下降,熔融太时与氧接触极易引起热氧化降解。PA1010(尼龙1010)塑料还具有较好的电气绝缘性和化学稳定性,无毒。不溶于大部分非极性溶剂,如烃、脂类、低级醇等,但溶解于强极性溶剂,如苯酚、浓硫酸、甲酸、水合三氯乙醛等,耐霉菌、细菌和虫蛀。现方案如下:(1)方案一该塑件的浇注系统主流道设计采用圆形截面积,分流道截面形状采用半圆形,浇口类型采用直接浇口,由于零件有侧凹,抽芯机构采用斜滑块形式,为了使塑件从模具型腔和型芯上脱出,采用推板推出机构。(2)方案二该塑件的浇注系统主流道设计采用圆锥形截面积,分流道截面形状采用梯形,浇口类型采用点浇口,由于零件有侧凹,抽芯机构采用斜导柱形式,为了使塑件从模具型腔和型芯上脱出,采用推板推出机构。(3)方案三该塑件的浇注系统主流道设计采用圆锥形截面积,分流道截面形状采用梯形,浇口类型采用侧浇口,由于零件有侧凹,抽芯机构采用斜滑块形式,为了使塑件从模具型腔和型芯上脱出,采用推板推出机构。综上所述,为了便于流道凝料的脱出,主流道设计成圆锥形,分流道采用梯形截面加工工艺性好,且塑料熔体的热量散失流动阻力均不大,由于直接浇口会使塑件上有明显的浇口的痕迹,侧浇口易产生熔接痕,所以采用点交口;侧向抽芯机构采用斜导柱形式;推板推出机构一般用于深腔薄壁的容器、罩子、壳体形以及透明制品等不允许有推杆痕迹的塑件;所以采用方案二。2.3研究方法或措施 通过文献调查,图书查阅,上网搜索,利用现有资料对零件了解,充分了解塑件结构,绘制3D图,并完成基本参数的计算及注射机的选用;确定模具类型及结构,完成模具结构草图;根据选定的方案计算设计。3.本课题研究的重点及难点,前期已开展工作3.1研究的重点及难点本次设计设计的是塑料端盖模具设计,重点是塑件的圆周分布有侧凹,内侧也有侧凹,必须用侧抽芯机构完成,所以侧抽芯机构的设计既是重点又是难点。3.2前期工作(1)首先在老师的指导下接受任务,了解所设计的对象塑料端盖模具设计;(2)上网查阅参考文献;(3)去图书馆借阅塑料模具设计相关书籍;(4)阅读借阅的图书并记录图书笔记;(5)利用现有的资料绘制了塑料端盖零件图,如图1所示;(6)根据零件图运用Pro/E画出塑料端盖的三维图,如图2所示;(7)对所给塑件的材料进行分析;(8)根据塑件材料的工艺确定可行的方案;(9)比较选择最终方案。4.完成本课题的工作方案及进度计划(按周次填写)12周:熟悉课题,完成关于塑料注射模的2000字文献综述,绘制塑件3D图,翻译外文资料;3周:确定模具类型及结构,绘制模具结构草图,准备开题答辩;49周:对模具工作部分尺寸及公差进行设计计算,并运用Pro/E辅助设计完成部分模具零件,准备中期答辩;1014周:运用Pro/E完成模具整体结构3D图,完成模具零件的选材、工艺规程的编制、装配图及零件图的绘制等工作;1518周:对所有图纸进行校核,编写设计说明书,所有资料提前请指导教师检查,准备毕业答辩。 图1 塑料端盖零件图图2 塑料端盖三维图指导教师意见(对课题的深度、广度及工作量的意见) 指导教师: 年 月 日 所在系审查意见: 系主管领导: 年 月 日参考文献1 屈华昌.塑料成型工艺与模具设计.北京:高等教育出版社.1993. 2 吴其晔译.注射成型手册. 北京:化学工业出版社.1992. 3 陈于萍,周兆元.互换性与测量技术基础.北京:机械工业出版社.1996. 4 陈剑鹤.模具设计基础. 机械工业出版,2007.5 李奇,朱江峰. 模具设计与制造M. 北京: 人民邮电出版社,2006.6 陈万林,等. 实用模具技术M. 北京: 机械工业出版社,2001.7 彭响方,陈己明,常春藤. UG NX4.0模具设计精选实例详解教程M . 北京:人民邮 电出版社,2007.8 安永明. 三面内抽芯盒盖注射模设计J. 工程塑料应用, 1997(2): 44-46.9 孙玲. 塑料成型工艺与模具设计M. 北京: 清华大学出版社, 2008.10 于同敏,刘铁山. 注射制品的熔接痕及控制对策J. 模具工业, 2002(7):33-37.11 田福祥. 四板式摆杆和斜滑块抽芯桶盖注射模设计J. 模具制造, 2010(12):40-42.12 蒋文森. 模具设计与制造简明手册. 上海科学技术出版社,2005.13 R.J. Crawford, Rubber and Plastic Engineering Design and Application, Applied Publisher Ltd. 1987, p. 110. 14 B.H. Min, A study on quality monitoring of injection-molded parts, J. Mater. Process. Technol. 136 (2002) 1. 15 K.F. Pun, I.K. Hui, W.G. Lewis, H.C.W. Lau, A multiple-criteria environmental impact assessment for the plastic injection molding process: a methodology, J. Cleaner Prod. 11 (2002) 41. Journal of Materials Processing Technology 187188 (2007) 690693Adaptive system for electrically driven thermoregulationof moulds for injection mouldingB. Nardina, B.Zagara, A. Glojeka, D. Kri zajbaTECOS, Tool and Die Development Centre of Slovenia, Kidri ceva Cesta 25, 3000 Celje, SloveniabFaculty of Electrical Engineering, Ljubljana, SloveniaAbstractOne of the basic problems in the development and production process of moulds for injection moulding is the control of temperature con-ditions in the mould. Precise study of thermodynamic processes in moulds showed, that heat exchange can be manipulated by thermoelectricalmeans. Such system upgrades conventional cooling systems within the mould or can be a stand alone application for heat manipulation withinit.Inthepaper,theauthorswillpresentresultsoftheresearchproject,whichwascarriedoutinthreephasesanditsresultsarepatentedinA6862006patent. The testing stage, the prototype stage and the industrialization phase will be presented. The main results of the project were total and rapidon-line thermoregulation of the mould over the cycle time and overall influence on quality of plastic product with emphasis on deformationcontrol.Presentedapplicationcanpresentamilestoneinthefieldofmouldtemperatureandproductqualitycontrolduringtheinjectionmouldingprocess. 2006 Elsevier B.V. All rights reserved.Keywords: Injection moulding; Mould cooling; Thermoelectric modules; FEM simulations1. Introduction, definition of problemDevelopment of technology of cooling moulds via thermo-electrical (TEM) means derives out of the industrial praxis andproblems, i.e. at design, tool making and exploitation of tools.Current cooling technologies have technological limitations.Their limitations can be located and predicted in advance withfiniteelementanalyses(FEA)simulationpackagesbutnotcom-pletely avoided. Results of a diverse state of the art analysesrevealed that all existing cooling systems do not provide con-trollable heat transfer capabilities adequate to fit into demand-ing technological windows of current polymer processingtechnologies.Polymer processing is nowadays limited (in term of short-ening the production cycle time and within that reducing costs)onlywithheatcapacitymanipulationcapabilities.Otherproduc-tion optimization capabilities are already driven to mechanicaland polymer processing limitations 3.Corresponding authors. Tel.: +386 3 490920; fax: +386 3 4264612.E-mail address: Blaz.Nardintecos.si (B. Nardin).1.1. Thermal processes in injection moulding plasticprocessingPlastic processing is based on heat transfer between plasticmaterial and mould cavity. Within calculation of heat transferone should consider two major facts: first is all used energywhich is based on first law of thermodynamicslaw of energyconservation 1, second is velocity of heat transfer. Basic taskat heat transfer analyses is temperature calculation over timeand its distribution inside studied system. That last depends onvelocity of heat transfer between the system and surroundingsand velocity of heat transfer inside the system. Heat transfer canbe based as heat conduction, convection and radiation 1.1.2. Cooling timeComplete injection moulding process cycle comprises ofmouldclosingphase,injectionofmeltintocavity,packingpres-sure phase for compensating shrinkage effect, cooling phase,mould opening phase and part ejection phase. In most cases, thelongest time of all phases described above is cooling time.Cooling time in injection moulding process is defined astime needed to cool down the plastic part down to ejectiontemperature 1.0924-0136/$ see front matter 2006 Elsevier B.V. All rights reserved.doi:10.1016/j.jmatprotec.2006.11.052B. Nardin et al. / Journal of Materials Processing Technology 187188 (2007) 690693691Fig. 1. Mould temperature variation across one cycle 2.The main aim of a cooling process is to lower additionalcoolingtimewhichistheoreticallyneedless;inpraxis,itextendsfrom 45 up to 67% of the whole cycle time 1,4.From literature and experiments 1,4, it can be seen, that themould temperature has enormous influence on the ejection timeand therefore the cooling time (costs).Injection moulding process is a cyclic process where mouldtemperature varies as shown in Fig. 1 where temperature variesfrom average value through whole cycle time.2. Cooling technology for plastic injection mouldsAs it was already described, there are already several differ-ent technologies, enabling the users to cool the moulds 5. Themost conventional is the method with the drilling technology,i.e. producing holes in the mould. Through these holes (coolinglines),thecoolingmediaisflowing,removingthegeneratedandaccumulatedheatfromthemould1,2.Itisalsoveryconvenientto build in different materials, with different thermal conductiv-ity with the aim to enhance control over temperature conditionsin the mould. Such approaches are so called passive approachestowards the mould temperature control.The challenging task is to make an active system, which canalter the thermal conditions, regarding to the desired aspects,like product quality or cycles time. One of such approaches isintegrating thermal electrical modules (TEM), which can alterthe thermal conditions in the mould, regarding the desired prop-erties. With such approach, the one can control the heat transferwith the time and space variable, what means, that the temper-ature can be regulated throughout the injection moulding cycle,independent of the position in the mould. The heat control isdone by the control unit, where the input variables are receivedfrom the manual input or the input from the injection mouldingsimulation. With the output values, the control unit monitors theTEM module behaviour.2.1. Thermoelectric modules (TEM)For the needs of the thermal manipulation, the TEM modulewasintegratedintomould.Interactionbetweentheheatandelec-trical variables for heat exchange is based on the Peltier effect.The phenomenon of Peltier effect is well known, but it was untilFig. 2. TEM block diagram.now never used in the injection moulding applications. TEMmodule (see Fig. 2) is a device composed of properly arrangedpairsofPandNtypesemiconductorsthatarepositionedbetweentwo ceramic plates forming the hot and the cold thermoelectriccooler sites. Power of a heat transfer can be easily controlledthrough the magnitude and the polarity of the supplied electriccurrent.2.2. Application for mould coolingThe main idea of the application is inserting TEM moduleinto walls of the mould cavity serving as a primary heat transferunit.Such basic assembly can be seen in Fig. 3. Secondary heattransfer is realized via conventional fluid cooling system thatallows heat flows in and out from mould cavity thermodynamicsystem.Device presented in Fig. 3 comprises of thermoelectricmodules (A) that enable primarily heat transfer from or to tem-perature controllable surface of mould cavity (B). Secondaryheat transfer is enabled via cooling channels (C) that deliverconstant temperature conditions inside the mould. Thermoelec-tric modules (A) operate as heat pump and as such manipulatewith heat derived to or from the mould by fluid cooling sys-tem (C). System for secondary heat manipulation with coolingchannels work as heat exchanger. To reduce heat capacity ofcontrollable area thermal insulation (D) is installed between themould cavity (F) and the mould structure plates (E).Fig. 3. Structure of TEM cooling assembly.692B. Nardin et al. / Journal of Materials Processing Technology 187188 (2007) 690693Fig. 4. Structure for temperature detection and regulation.The whole application consists of TEM modules, a temper-ature sensor and an electronic unit that controls the completesystem. The system is described in Fig. 4 and comprises of aninput unit (input interface) and a supply unit (unit for electronicand power electronic supplyH bridge unit).The input and supply units with the temperature sensor loopinformation are attached to a control unit that acts as an exe-cution unit trying to impose predefined temperate/time/positionrelations.UsingthePeltiereffect,theunitcanbeusedforheatingor cooling purposes.The secondary heat removal is realized via fluid coolingmedia seen as heat exchanger in Fig. 4. That unit is based oncurrent cooling technologies and serves as a sink or a sourceof a heat. This enables complete control of processes in termsof temperature, time and position through the whole cycle.Furthermore, it allows various temperature/time/position pro-files within the cycle also for starting and ending procedures.Described technology can be used for various industrial andresearchpurposeswhereprecisetemperature/time/positioncon-trol is required.ThepresentedsystemsinFigs.3and4wereanalysedfromthetheoretical,aswellasthepracticalpointofview.ThetheoreticalaspectwasanalysedbytheFEMsimulations,whilethepracticalonebythedevelopmentandtheimplementationoftheprototypeinto real application testing.3. FEM analysis of mould coolingCurrent development of designing moulds for injectionmoulding comprises of several phases 3. Among them is alsodesign and optimization of a cooling system. This is nowa-daysperformedbysimulationsusingcustomizedFEMpackages(Moldflow 4) that can predict cooling system capabilities andespeciallyitsinfluenceonplastic.Withsuchsimulations,moulddesigners gather information on product rheology and deforma-tionduetoshrinkageasellasproductiontimecycleinformation.This thermal information is usually accurate but can still beunreliable in cases of insufficient rheological material informa-tion. For the high quality input for the thermal regulation ofTEM, it is needed to get a picture about the temperature distri-bution during the cycle time and throughout the mould surfaceandthroughoutthemouldthickness.Therefore,differentprocesssimulations are needed.Fig. 5. Cross-section of a prototype in FEM environment.3.1. Physical model, FEM analysisImplementation of FEM analyses into development projectwas done due to authors long experiences with such packages4 and possibility to perform different test in the virtual envi-ronment.WholeprototypecoolingsystemwasdesignedinFEMenvironment(seeFig.5)throughwhichtemperaturedistributionin each part of prototype cooling system and contacts betweenthem were explored. For simulating physical properties inside adeveloped prototype, a simulation model was constructed usingCOMSOL Multiphysics software. Result was a FEM modelidentical to real prototype (see Fig. 7) through which it waspossible to compare and evaluate results.FEM model was explored in term of heat transfer physicstaking into account two heat sources: a water exchanger withfluid physics and a thermoelectric module with heat transferphysics(onlyconductionandconvectionwasanalysed,radiationwas ignored due to low relative temperature and therefore lowimpact on temperature).Boundary conditions for FEM analyses were set with thegoal to achieve identical working conditions as in real test-ing. Surrounding air and the water exchanger were set at stabletemperature of 20C.Fig. 6. Temperature distribution according to FEM analysis.B. Nardin et al. / Journal of Materials Processing Technology 187188 (2007) 690693693Fig. 7. Prototype in real environment.ResultsoftheFEManalysiscanbeseeninFig.6,i.e.temper-ature distribution through the simulation area shown in Fig. 5.Fig. 6 represents steady state analysis which was very accuratein comparison to prototype tests. In order to simulate the timeresponse also the transient simulation was performed, showingverypositiveresultsforfuturework.Itwaspossibletoachieveatemperature difference of 200C in a short period of time (5s),what could cause several problems in the TEM structure. Thoseproblems were solved by several solutions, such as adequatemounting, choosing appropriate TEM material and applyingintelligent electronic regulation.3.2. Laboratory testingAs it was already described, the prototype was produced andtested (see Fig. 7). The results are showing, that the set assump-tions were confirmed. With the TEM module it is possible tocontrol the temperature distribution on different parts of themould throughout the cycle time. With the laboratory tests, itwas proven, that the heat manipulation can be practically regu-lated with TEM modules. The test were made in the laboratory,simulating the real industrial environment, with the injectionmoulding machine Krauss Maffei KM 60 C, temperature sen-sors, infrared cameras and the prototype TEM modules. Thetemperature response in 1.8s varied form +5 up to 80C, whatrepresents a wide area for the heat control within the injectionmoulding cycle.4. ConclusionsUse of thermoelectric module with its straightforward con-nection between the input and output relations represents amilestone in cooling applications. Its introduction into mouldsforinjectionmouldingwithitsproblematiccoolingconstructionand problematic processing of precise and high quality plasticparts represents high expectations.The authors were assuming that the use of the Peltier effectcan be used for the temperature control in moulds for injectionmoulding. With the approach based on the simulation work andtherealproductionoflaboratoryequipmentproved,theassump-tions were confirmed. Simulation results showed a wide area ofpossible application of TEM module in the injection mouldingproc
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:瓶塞、塑料端盖注射模具设计-注塑模含20张CAD图
链接地址:https://www.renrendoc.com/p-82961987.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!