陕西黄陵中学高一数学下学期期末考试普通班含解析_第1页
陕西黄陵中学高一数学下学期期末考试普通班含解析_第2页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黄陵中学高一普通班第二学期数学期末考试题选择题(本题共15小题,每小题5分,共75分)1.1.小明今年17岁了,与他属相相同的老师的年龄可能是( )A. 26 B. 32 C. 36 D. 41【答案】D【解析】【分析】根据老师的年龄与小明的年龄差为的倍数,逐一验证排除即可得结果.【详解】因为老师的年龄与小明的年龄差为的倍数,对,不合题意;对,不合题意;对,不合题意;对,符合题意,故选D.【点睛】用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进行检验,从而做出正确的判断,这种方法叫做特殊法. 若结果为定值,则可采用此法. 特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性.2.2.为了解某校高一年级400名学生的身高情况,从中抽取了50名学生的身高进行统计分析,在这个问题中,样本是指( )A. 400 B. 50 C. 400名学生的身高 D. 50名学生的身高【答案】D【解析】【分析】直接利用样本的定义求解即可.【详解】本题研究的对象是某校高一年级400名学生的身高情况,所以样本是50名学生的身高,故选D.【点睛】本题考査的是确定样本,解此类题需要注意“考査对象实际应是表示事物某一特征的数据,而非考査的事物”,我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考査的对象,本题中研究对象是:学生的身高.3.3.若角=450+k1800,kZ,则角的终边落在( )A. 第一或第三象限 B. 第一或第二象限C. 第二或第四象限 D. 第三或第四象限【答案】A【解析】【分析】利用k=0和k=1时确定角终边所在的象限,利用排除法即可得结果.【详解】=45+k180,kZ,当k=0时,=45,此时为第一象限角,排除C,D;当k=1时,=225,此时是第三象限角,排除B;角的终边落在第一或第三象限角,故选A.【点睛】本题主要考查角的终边所在象限问题,以及排除法做选择题,属于简单题.4.4.半径为2,圆心角为600的扇形面积为( )A. 120 B. 240 C. 23 D. 43【答案】C【解析】【分析】根据弧长公式可求得弧长l=r=,利用扇形的面积公式S=12lr,可得结果.【详解】因为扇形的圆心为=3,半径为2,所以弧长l=r=23,S=12lr=12232=23,故选C.【点睛】本题主要考查弧长公式与扇形的面积公式S=12lr的应用,意在考查综合应用所学知识解决问题的能力,属于中档题.5.5.若角是第二象限角,则点Psin,cos在( )A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】D【解析】【分析】由是第二象限角,可得sin0,cos0,cos0,点Psin,cos在第四象限,故选D【点睛】本题主要考查三角函数在每个象限的符号,意在考查对基础知识的掌握情况,属于简单题.6.6.有一个几何体的三视图及其尺寸如下(单位cm),则该几何体的体积为:( )A. 6cm3 B. 12cm3C. 24cm3 D. 36cm3【答案】B【解析】【分析】由三视图得到几何体是圆锥,可得圆锥半径和母线长,从而求得圆锥的高,进而可得结果.【详解】由几何体的三视图知,该几何体是底面半径为3cm,母线长是5cm的圆锥,则圆锥的高是5232=4cm,又圆锥的体积公式是V=13r2h,则该圆锥的体积是V=13324=12cm3,故选B.【点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.7.7.函数y=cosx,x0,2的图象与直线y=12的交点的个数为( )A. 0 B. 1 C. 2 D. 3【答案】C【解析】【分析】由cosx=12在区间0,2上的解为x=3或x=53可得结果.【详解】y=cosx,x0,2的图象与直线y=12的交点的个数,即方程cosx=12在区间0,2上的解的个数,由cosx=12在区间0,2上的解为x=3或x=53,可得方程cosx=12在区间0,2上的解的个数为2,故选C.【点睛】本题主要考查特殊角的三角函数、简单三角方程的解法,余弦函数的图象和性质,体现了转化与划归思想,考查了数形结合思想的应用,属于中档题.8.8.(cos12sin12)(cos12+sin12)的值等于( )A. 32 B. 12 C. -12 D. -32【答案】A【解析】【分析】利用二倍角的余弦公式,结合特殊角的三角函数可得结果.【详解】因为(cos12-sin12)(cos12+sin12)=cos212sin212=cos212=cos6=32,故选A.【点睛】本题主要考查二倍角的余弦公式以及特殊角的三角函数,关键是“逆用”二倍角的余弦公式,意在考查对基本公式掌握的熟练程度,属于简单题.9.9.阅读如图所示的程序框图,若输入的a,b,c的值分别是21,32,75,则输出的a,b,c分别是()A. 75,21,32 B. 21,32,75C. 32,21,75 D. 75,32,21【答案】A【解析】【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的a,b,c的值.【详解】由图知输入a=21,b=32,c=75后,第一步x=a表示将上一步的值21赋予x此时x=21,b=32,c=75;第二步a=c表示将上一步的值75赋予此时a=75,x=21,b=32;第三步c=b表示将上一步的b值32赋予此时a=75,x=21,c=32;第四步b=x表示将上一步的x值21赋予b此时a=75,b=21,c=32,故选A.【点睛】解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.10.10.已知tan=13,tan=-2,00900,9001800,则角+的值为()A. 450 B. 600 C. 1200 D. 1350【答案】D【解析】【分析】直接利用两角和的正切公式求得tan+,结合00900,9001800,从而求得+的值.【详解】因为tan=13,tan=-2,所以tan+=tan+tan1tantan=1321132=1,0090,90180,+90,270,+=135,故选D.【点睛】本题主要考查两角和的正切公式的应用,根据三角函数的值求角,属于基础题. “给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系; “给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角11.11.将函数y=sin2x的图象向左平移6个单位长度,所得图象的解析式为()A. y=sin2x+6 B. y=sin(2x+3)C. y=sin(2x-3) D. y=sin2x+3【答案】B【解析】【分析】直接利用三角函数的图象的平移原则,写出结果即可.【详解】将函数y=sin2x的图象向左平移6个单位长度后,所得图象对应的函数是y=sin2x+6=sin2x+3,故选B.【点睛】本题考查了三角函数的图象变换,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.12.12.在ABC中,sinAsinBcosAcosB,则这个三角形的形状为()A. 锐角三角形 B. 钝角三角形 C. 直角三角形 D. 等腰三角形【答案】B【解析】【分析】对不等式变形,利用两角和的余弦公式,求出A+B的范围,即可判断三角形的形状.【详解】在ABC中,sinAsinB0,A+B0,2,C2,三角形是钝角三角形,故选B.【点睛】本题考查三角形的形状,两角和的余弦函数的应用,属于中档题. 判断三角形状的常见方法是:(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断;(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断;(3)确定一个内角为钝角进而知其为钝角三角形.13.13.函数f(x)=sin2x+3cos2x的最大值和周期分别为()A. 1, B. 1,2 C. 2, D. 2,2【答案】C【解析】【分析】利用辅助角公式将函数f(x)=sin2x+3cos2x化成y=Asinx+的形式,从而可得结果.【详解】因为f(x)=sin2x+3cos2x=212sin2x+32cos2x=2sin2x+3原函数的最小正周期是22=,最大值是2,故选C.【点睛】本题主要考查辅助角公式的应用以及三角函数的周期与最值,一般地,三角函数求最小正周期,最值和单调区间时都要把函数化简为y=Asinx+的形式后进行求解.14.14.既是偶函数又在区间(0,)上单调递减的函数是( )A. y=sinx B. y=cosxC. y=sin2x D. y=cos2x【答案】B【解析】试题分析:和是奇函数不对.在区间上不具有单调性,是偶函数,在区间是减函数.考点:正弦函数和余弦函数图像和性质15.15.函数y=4sin(2x-6)的图象的一个对称中心是()A. (12,0) B. (3,0) C. (-6,0) D. (6,0)【答案】A【解析】【分析】由2x6=kx=k2+12,判断各个选项是否正确,从而可得结果.【详解】由2x6=kx=k2+12,令k=0可得x=12,所以函数y=4sin(2x-6)的图象的一个对称中心是12,0,故选A.【点睛】本题主要考查三角函数的图象与性质,属于中档题.由 函数y=Asin(x+)可求得函数的周期为2;由x+=k+2可得对称轴方程;由x+=k可得对称中心横坐标.二、填空题(本题共5小题,每题5分,共25分)16.16.已知tan=1,则2sin+3cos4sin-5cos的值为_.【答案】-5【解析】【分析】原式分子分母同除以cos,将tan=1代入即可得结果.【详解】因为tan=1,所以2sin+3cos4sin-5cos=2tan+34tan-5=2+34-5=-5,故答案为-5.【点睛】本题主要考查,同角三角函数之间的关系的应用,属于中档题. 同角三角函数之间的关系包含平方关系与商的关系,平方关系是正弦与余弦值之间的转换,商的关系是正余弦与正切之间的转换.17.17.在50ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,则发现草履虫的概率为_ .【答案】0.04【解析】【分析】所求的概率属于几何概型,测度为体积,由几何概型的计算公式可得结论.【详解】记“随机取出2ml水样放到显微镜下观察,发现草履虫”为事件A,由题意可得,所求的概率属于几何概型,测度为体积,由几何概型的计算公式可得PA=250=0.04,故答案为0.04.【点睛】本题主要考查“体积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与体积有关的几何概型问题关鍵是计算问题的总体积以及事件的体积.18.18.函数y=-2sinx的定义域为_.【答案】x|2k+x2k+2,kZ【解析】【分析】由2sinx0,根据正弦函数的性质解不等式可得结果.【详解】要使函数有意义,则2sinx0,即sin0,则2k+x2k+2,故函数的定义域为2k+,2k+2,kZ,故答案为2k+,2k+2,kZ.【点睛】本题主要考查函数的定义域,以及正弦函数的性质,意在考查综合运用所学知识解答问题的能力.19.19.比较大小:sin274_ sin325(填“”)【答案】【解析】【分析】由诱导公式可得sin325=sin25,sin274=sin4,由正弦函数y=s

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论