高中数学 4.3.1 空间直角坐标系学案 新人教A必修2_第1页
高中数学 4.3.1 空间直角坐标系学案 新人教A必修2_第2页
免费预览已结束,剩余3页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

4.3.1空间直角坐标系(学案)课前预习学案1、 预习目标1. 用类比的数学思想方法探索空间直角坐标系的建立方法2. 理解空间直角坐标系与点的坐标的意义,掌握由空间直角坐标系内的点确定其坐标或由坐标确定其在空间直角坐标系内的点,认识空间直角坐标系中的点与坐标的关系2、 预习内容1. 如何确定一个点在一条直线上的位置? 。2. 如何确定一个点在一个平面内的位置? 。3.从空间某一个定点O引三条互相垂直且有相同单位长度的数轴:x轴,y轴,z轴.这样就建立了 ,点O叫作 ,x轴、y轴、z轴叫作 ,这三条坐标轴中每两条确定一个坐标平面,分别称为 , , .4.在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,若中指指向z轴的正方向则称这个坐标系为 。5.空间任意点A的坐标可以用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点A在此 ,记作 。其中x 叫做点A的 ,y叫做点A的 ,z叫做点A的 。6.空间两点间的距离公式 。三、提出疑惑1、 ;2、 ;3、 。课内探究学案一、学习目标1. 让学生用类比的数学思想方法探索空间直角坐标系的建立方法,进一步体会数学概念、方法产生和发展的过程2. 理解空间直角坐标系与点的坐标的意义,掌握由空间直角坐标系内的点确定其坐标或由坐标确定其在空间直角坐标系内的点,认识空间直角坐标系中的点与坐标的关系学习重点:求一个几何图形的空间直角坐标。学习难点:空间直角坐标系的理解。二、学习过程思考1: 如何确定一个点在三维空间内的位置?例:如图26-2,在房间(立体空间)内如何确定电灯位置?思考2:在空间直角坐标系中,空间任意一点与有序数组(x,y,z)有什么样的对应关系? 思考3: (1)在空间直角坐标系中,坐标平面xOy,xOz,yOz上点的坐标有什么特点? (2) 在空间直角坐标系中,x轴、y轴、z轴上点的坐标有什么特点? 典型例题例1、 在空间直角坐标系Oxyz中,作出点P(5,4,6)注意:在分析中紧扣坐标定义,第一步从原点出发沿x轴正方向移动5个单位,第二步沿与轴平行的方向向右移动4个单位,第三步沿与z轴平行的方向向上移动6个单位(如图26-5)变式练习: 已知长方体ABCDABCD的边长AB12,AD8,AA5,以这个长方体的顶点A为坐标原点,射线AB,AD,AA分别为x轴、y轴和z轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标讨论:若以C点为原点,以射线CB,CD,CC方向分别为x,y,z轴的正半轴,建立空间直角坐标系,那么各顶点的坐标又是怎样的呢?例2、结晶体的基本单位称为晶胞,如图是食盐晶胞的示意图(可看成是八个棱长为的小正方体堆积成的正方体),其中色点代表钠原子,黑点代表氯原子,如图,建立空间直角坐标系Oxyz后,试写出全部钠原子所在位置的坐标。变式练习:在长方体OABCDABC中,OA3,OC4,OD2,写出D 、C、 A 、B四点关于平面xOy对称的坐标。反思总结: 当堂检测:1. 在空间直角坐标系中,画出下列各点:A(0,0,3),B(1,2,3),C(2,0,4),D(1,2,2)2. 已知:长方体ABCDABCD的边长AB12,AD8,AA7,以这个长方体的顶点B为坐标原点,射线AB,BC,BB分别为x轴、y轴和z轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标3. 写出坐标平面yOz上yOz平分线上的点的坐标满足的条件课后练习与提高1.在空间直角坐标系中,点,过点作平面的垂线,则的坐标为() 2.已知点,则点关于原点的对称点的坐标为()3.坐标原点到下列各点的距离最小的是()4. 在空间直角坐标系中,的所有点构成的图形是5.点关于平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论