

已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省南昌大学附属中学2018-2019学年高一数学下学期第三次月考试题 理(含解析)第卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列给出的赋值语句中正确的是( )A. B. C. D. 【答案】C【解析】【分析】由赋值号左边只能是变量名字,不能是表达式,比较各个选项即可得解【详解】赋值号左边只能是变量名字,不能是表达式,且赋值号左右不能对换对于B,赋值号左边是常数,不合要求;对于A,赋值号左边是表达式,不合要求;对于D赋值号左边是表达式.故选:C【点睛】本题主要考查了赋值语句的表示形式,属于基础题2.若的平均数为,方差为,且,则新数据的平均数和方差分别为( )A. B. C. D. 【答案】C【解析】【分析】根据平均数和方差公式依次计算得到结果即可.【详解】的平均数为 方差为: 故答案为:C.【点睛】这个题目考查了数据平均数和方差的计算,属于基础题.3.已知某算法的程序框图如图所示,则该算法的功能是( )A. 求首项为,公比为的等比数列的前项的和B. 求首项为,公比为的等比数列的前项的和C. 求首项为,公比为的等比数列的前项的和D. 求首项为,公比为的等比数列的前项的和【答案】A【解析】【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案【详解】由已知中的程序框图可知:该程序的循环变量n的初值为1,终值为2019,步长为2,故循环共执行了1009次由S中第一次累加的是2111,第二次累加的是2314,故该算法的功能是求首项为1,公比为4的等比数列的前1009项的和,故选:A【点睛】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答4.某班的全体学生参加英语测试,成绩的频率分布直方图(如图所示),数据的分组依次为,则该次英语测试该班的平均成绩是( )A. B. C. D. 【答案】B【解析】【分析】利用直方图计算平均数的方法是每个小长方形的面积乘以每个小长方形底边中点横坐标的和平均数是每个长方条的中点乘以间距再乘以长方条的高,将每一个数值相加得到.【详解】平均分是每个小长方形的面积乘以每个小长方形底边中点横坐标的和平均分为:300.00520+500.0120+700.0220+900.0152068故选:B【点睛】本题考查了频率分布直方图,重点是小矩形的高平均数是每个长方条的中点乘以间距再乘以长方条的高,将每一个数值相加得到.5.若不等式对任意实数均成立,则实数取值范围是( )A. B. C. D. 【答案】C【解析】试题分析:不等式时对任意实数均成立,(m-2)x2+2(m-2)x-40,当m-2=0,即m=2时,不等式为-40,显然成立;当m-20,即m2时,应满足m20且4(m2)2+16(m2)0,解得-2m2;综上,-2m2,即实数m的取值范围是(-2,2.考点:一元二次不等式的解法6.两个等差数列和其前项和分别为,且,则=( )A. B. C. D. 【答案】A【解析】分析】根据等差数列的性质得到,将代入表达式得到结果.【详解】, 故答案为:A.【点睛】这个题目考查了等差数列的性质,属于基础题.7.在中,则一定是A. 锐角三角形B. 钝角三角形C. 等腰三角形D. 等边三角形【答案】D【解析】【分析】根据余弦定理得到,进而得到三个角相等,是等边三角形.【详解】中,, 故得到,故得到角A等于角C,三角形为等边三角形.故答案为:D.【点睛】这个题目考查了余弦定理的应用,以及特殊角的三角函数值的应用,属于简单题.8.执行如图所示的程序框图后,输出值为,则的取值范围是( )A. B. C. D. 【答案】C【解析】【分析】执行程序框图,写出每次循环得到的S,n的值,当输出n的值为4时,有S,故可求P的取值范围【详解】执行程序框图,有n1,S0满足条件SP,有S,n2;满足条件SP,有S,n3;满足条件SP,有S,n4;此时,不满足条件SP,有S,输出n的值为4故当P的取值在(,时,不满足条件P,退出循环,输出n的值为4故选:C【点睛】本题主要考察了程序框图和算法,属于基础题9.某公司在20142018年的收入与支出如下表所示:收入(亿元)支出(亿元)根据表中数据可得回归方程为,依此估计2019年该公司收入为8亿元时支出为( )A. 42亿元B. 44亿元C. 52亿元D. 54亿元【答案】C【解析】【分析】根据表中数据,计算、以及回归系数,写出回归方程,利用回归方程计算x8时的值即可【详解】根据表中数据,计算(2.2+2.6+4.0+5.3+5.9)4,(0.2+1.5+2.0+2.5+3.8)2,20.841.2,回归直线方程为0.8x1.2,计算x8时0.881.25.2(亿元),即2017年该公司收入为8亿元时的支出为5.2亿元故选:C【点睛】本题考查了线性回归方程的应用问题,是基础题线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x与Y之间的关系,这条直线过样本中心点线性回归方程适用于具有相关关系的两个变量,对于具有确定关系的两个变量是不适用的, 线性回归方程得到的预测值是预测变量的估计值,不是准确值.10.一个等比数列的前项和为,前项和为,则前项和为( )A. B. C. D. 【答案】B【解析】【分析】根据等比数列的性质得到也是等比数列,公比为3,进而得到【详解】等比数列的前项和为,前项和为,即 根据等比数列的性质得到也是等比数列,公比为3,故得到 故答案为:B.【点睛】这个题目考查了等比数列的性质的应用属于简单题.11.已知中,若仅有一解,则( )A. B. C. D. 【答案】C【解析】【分析】若已知三角形的一边及该边的对角,且三角形形状唯一,求另一边,则该三角形是直角三角形或钝角三角形,然后再进一步确定另一边的长度。【详解】由题中已知中,则角所对的高线长可表示为,因为三角形形状唯一,所以三角形为直角三角形或钝角三角形,则 或, 所以 或 故选C.【点睛】本题考查三角形解的情况,解题的关键是找到临界值,属于简单题。12.设,且恒成立,则的最大值是( )A. B. C. D. 【答案】B【解析】【分析】原式等价于,根据均值不等式求得左侧最小值,进而估算出结果.详解】等价于 故得到则的最大值是3.故答案为:B.【点睛】本题考查了“乘1法”与基本不等式的性质,在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.第卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.某班级有名学生,现采取系统抽样的方法在这名学生中抽取名,将这名学生随机编号并分组,若在第三组中抽得的号码为号的学生,则在第八组中抽得的号码为_的学生【答案】【解析】【分析】由题设知第八组的号码数比第三组的号码数大(83)5,由此能求出结果【详解】这50名学生随机编号150号,并分组,第一组15号,第二组610号,第十组4650号,在第三组中抽得号码为12的学生,则在第八组中抽得号码为12+(83)537故答案为:37【点睛】抽样选用哪一种抽样形式,要根据题目所给的总体情况来决定,若总体个数较少,可采用抽签法,若总体个数较多且个体各部分差异不大,可采用系统抽样,若总体的个体差异较大,可采用分层抽样14.如图是甲、乙两名篮球运动员在五场比赛中所得分数的茎叶图,则在这五场比赛中得分较为稳定(方差较小)的那名运动员的得分的方差为_【答案】6.8【解析】根据茎叶图的数据,计算甲的平均数为 乙的平均数为根据茎叶图中的数据知乙的成绩波动性小,较为稳定,即方差较小,计算乙成绩的方差为,故填6.8.15.如图,在中,线段的垂直平分线交线段于点,且,则_【答案】【解析】【分析】依题意得BDDC,可求,DCDB,利用余弦定理可求cosA的值,由同角三角函数基本关系式可求sinA,根据余弦定理求得最后结果.【详解】依题意得BDDC,因为ACDA+DC4,DADC1,所以,DCDB,在ABD中,cosA 所以sinA,在ABC中,BC2AB2+AC22ABACcosA.【点睛】本题主要考查了余弦定理,同角三角函数基本关系式,正弦定理,在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现 及 、 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.16.记数列的前项和为,若不等式任意等差数列及任意正整数都成立,则实数的取值范围为_【答案】【解析】分析】利用公差与首项化简不等式an22ma12,利用换元得二次不等式,再根据二次函数的单调性可得m的求值范围【详解】an2,令(n1)dt,则an26a1t+5t2不等式an22ma12,a10时,化为:22m,2m,解得ma10时,mR综上可得:m实数m的范围为故答案为:【点睛】本题考查了等差数列的通项公式与求和公式、二次函数的单调性、分类讨论方法、不等式的性质,考查了推理能力与计算能力,属于难题三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB.()求B;()若b=2,求ABC面积的最大值.【答案】()B=()【解析】(1)a=bcosC+csinB由正弦定理知sinA=sinBcosC+sinCsinB 在三角形ABC中,A=(B+C)sinA=sin(B+C)=sinBcosC+cosBsinC 由和得sinBsinC=cosBsinC而C(0,),sinC0,sinB=cosB又B(0,),B=(2)ABC的面积S=acsinB=ac由已知及余弦定理得4=a2+c22accosB 而a2+c22ac 联立和得ac,当且仅当a=c时等号成立因此ABC面积的最大值为18.解关于的不等式【答案】详见解析.【解析】【分析】将不等式变为;根据二次项系数为零、开口方向、实根个数与大小分别讨论不同取值范围下的解集.【详解】当时, 当时, 当时, 当时, 当时, 【点睛】本题考查含参数不等式的求解问题,要通过二次项系数、开口方向、实根个数和大小确定参数不同取值下的解集.19.对某一中学同年龄的名男生的身高进行了测量,结果如下:人;人;人;人;人;人(1)列出频率分布表;(2)画出频率分布直方图;(3)估计这名男生的身高的众数和中位数。(只要求结果不需要过程,中位数保留位小数)【答案】(1)详见解析;(2)详见解析;(3)众数:171,中位数:170.85。【解析】【分析】(1)根据题干数据得到表格;(2)根据题干和第一问的表中数据得到结果;(3)根据公式计算.【详解】(1)列出频率分布表:分组频数频率合计(2)画出频率分布直方图如图:(3)众数:171,中位数:170.85【点睛】这个题目考查了频率分布直方图的应用,以及在频率分布直方图中计算平均值和中位数的应用,属于基础题.20.某研究机构对高一学生的记忆力和判断力进行了统计分析,得出如下数据:(1)画出上表数据的散点图;(2)根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)试根据(2)求出的线性回归方程,预测记忆力为的同学的判断力.【答案】(1)详见解析;(2);(3).【解析】【分析】(1)根据表中数据画出散点图;(2)根据公式得到相应的参数值,进而求出方程;(3)将代入方程求出结果.【详解】(1)散点图如图:(2)因为,所以,,故线性回归方程为(3)由(2)中线性回归方程可知,当时,所以预测记忆力为的同学的判断力约为【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x与Y之间的关系,这条直线过样本中心点线性回归方程适用于具有相关关系的两个变量,对于具有确定关系的两个变量是不适用的, 线性回归方程得到的预测值是预测变量的估计值,不是准确值21.正项数列的前项和为满足.(1)求及;(2)令,数列的前项和为,证明:对于任意的,都有.【答案】(1), (2)见解析【解析】试题分析:(1)求解关于的方程组可得.由前n项和于通项公式的关系可得; (2)裂项求得数列的前n项和,结合题意和不等式的性质即可得出题中的结论.试题解析:解:(1)由,得,由于是正项数列,故,所以.当时,当时,当时也符合上式,证明:由,得故是关于递增,又 综上:.22.已知函数(1)解不等式;(2)若函数在区间上存在零点,求实数取值范围;(3)若函数,其中为奇函数,为偶函数,若不等式对任意恒成立,求实数的取值范围【答案】(1)(1,3)(2) (3) 【解析】【分析】(1)利用换元法,将原不等式转化为一元二次不等式来求解.(2)将问题分离常数,转化为在有解的问题来解决.求得在上的值域,来求得的取值范围.(3)先根据函数的奇偶性的概念,求得的解析式,化简所求不等式为,利用换元法及分离参数法分离出,利用恒成立问题解决方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 六一活动创意商场活动方案
- 六一活动看电影活动方案
- 六一活动西瓜节活动方案
- 六一活动跳街舞活动方案
- 六一游艺活动方案
- 六一获奖活动策划方案
- 六一赠书卡活动方案
- 六一足球活动方案
- 六一钢琴活动方案
- 六年级公益送书活动方案
- 非营利组织财务管理制度与流程
- TCAMA 111-2024 养猪舍空气过滤系统配置规范
- 《爱护鸟类》参考课件
- 民宿装修预算及施工合同
- 2025年宁夏宁东开发投资有限公司招聘笔试参考题库含答案解析
- 《人工智能助力养老服务情况的问卷调研探析报告》18000字(论文)
- 人教版七年级地理下册日本课件1
- 《水泥混凝土桥面铺装及护栏机械化施工技术指南》
- 2025年内蒙古鄂尔多斯市国有资产投资控股集团有限公司招聘笔试参考题库附带答案详解
- 短期零工劳务外包协议3篇
- 2025年政府采购代理机构考试题库及答案
评论
0/150
提交评论