已阅读5页,还剩26页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.1.1椭圆及其标准方程(第一课时),仙女座星系,星系中的椭圆,“传说中的”飞碟,如图,建立直角坐标系xOy,,使x轴经过点F1、F2,并且,点O与线段F1F2的中点重合.,设点M(x,y)是椭圆上任一点,,椭圆的焦距为2c(c0).,2.椭圆标准方程的推导:,讲授新课,如图,建立直角坐标系xOy,,使x轴经过点F1、F2,并且,点O与线段F1F2的中点重合.,设点M(x,y)是椭圆上任一点,,椭圆的焦距为2c(c0).,2.椭圆标准方程的推导:,讲授新课,如图,建立直角坐标系xOy,,使x轴经过点F1、F2,并且,点O与线段F1F2的中点重合.,设点M(x,y)是椭圆上任一点,,椭圆的焦距为2c(c0).,焦点F1、F2的坐标分别是(c,0)、(c,0),2.椭圆标准方程的推导:,讲授新课,如图,建立直角坐标系xOy,,使x轴经过点F1、F2,并且,点O与线段F1F2的中点重合.,设点M(x,y)是椭圆上任一点,,椭圆的焦距为2c(c0).,焦点F1、F2的坐标分别是(c,0)、(c,0),又设M与F1和F2的距离的和等于常数2a,2.椭圆标准方程的推导:,讲授新课,如图,建立直角坐标系xOy,,使x轴经过点F1、F2,并且,点O与线段F1F2的中点重合.,设点M(x,y)是椭圆上任一点,,椭圆的焦距为2c(c0).,焦点F1、F2的坐标分别是(c,0)、(c,0),又设M与F1和F2的距离的和等于常数2a,|MF1|MF2|2a,2.椭圆标准方程的推导:,讲授新课,(ab0).,椭圆的标准方程:,是F1(c,0)、F2(c,0),且c2a2b2.,它所表示的椭圆的焦点在x轴上,焦点,讲授新课,讲授新课,如果使点F1、F2在y轴上,点F1、F2的坐标是F1(0,c)、F2(0,c),,则椭圆方程为:,(ab0).,如何根据标准方程判断焦点在哪个坐标轴上?,两种形式的标准方程的比较:,与,椭圆的标准方程,|MF1|+|MF2|=2a(2a|F1F2|),(c,0)、(c,0),(0,c)、(0,c),b2=a2c2,分母哪个大,焦点就在哪一根坐标轴上,答:在x轴上(-3,0)和(3,0),答:在y轴上(0,-5)和(0,5),答:在y轴上(0,-1)和(0,1),焦点在分母大的那个轴上。,判定下列椭圆的焦点在哪个轴上,写出焦点坐标。,2.用定义判断下列动点M的轨迹是否为椭圆。,(1)到F1(-2,0)、F2(2,0)的距离之和为6的点的轨迹。,(2)到F1(0,-2)、F2(0,2)的距离之和为4的点的轨迹。,(4)到F1(-2,0)、F2(0,2)的距离之和为3的点的轨迹。,因|MF1|+|MF2|=6|F1F2|=4,故点M的轨迹为椭圆。,因|MF1|+|MF2|=4=|F1F2|=4,故点M的轨迹不是椭圆(是线段F1F2)。,(3)到F1(0,-2)、F2(0,2)的距离之和为3的点的轨迹。,因|MF1|+|MF2|=4|F1F2|=4,故点M的轨迹不存在。,例1、椭圆的两个焦点的坐标分别是(4,0)、(4,0),椭圆上一点P到两焦点距离之和等于10,求椭圆的标准方程。,解:椭圆的焦点在x轴上设它的标准方程为:2a=10,2c=8a=5,c=4b2=a2c2=5242=9所求椭圆的标准方程为:,例2、两个焦点的坐标分别是(0,-2)、(0,2)并且椭圆经过点(-3/2,5/2),求椭圆的方程。,解:已
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年精准扶贫信息服务平台可行性研究报告及总结分析
- 2025年棉花种植合作协议
- 砂石厂责任制
- 2025年美容院技师聘用协议
- 2025年一级建造师-管理-记忆口诀大全(19条)
- 绿化工程水生植物种植的施工方案
- 2025年电子游戏教育应用项目可行性研究报告及总结分析
- 2025注册会计师跨科综合题库考试题及答案
- 2025年再生水处理与回用项目可行性研究报告及总结分析
- 2025年(新版)窑炉反应工(技师)职业技能鉴定考试题 含答案
- 停车场引资计划书
- 保卫科月工作总结
- 整本书阅读教学设计案例
- 律师事务所投标书(两份)
- 水资源调查实训报告
- 食品安全风险管控日管控检查清单
- 金属加工企业机加工安全风险分级管控清单
- 《思想道德与法治》学习法治思想 提升法治素养-第六章
- AI人工智能应用介绍PPT
- 央视《大风车》栏目评析
- 日历含农历(每月一张)可记事
评论
0/150
提交评论