翻译2.pdf

F82H钢小号样本的机械特性外文文献翻译、中英文翻译

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:83062434    类型:共享资源    大小:732.34KB    格式:ZIP    上传时间:2020-06-01 上传人:QQ14****9609 IP属地:陕西
12
积分
关 键 词:
F82H 小号 样本 机械 特性 外文 文献 翻译 中英文
资源描述:
F82H钢小号样本的机械特性外文文献翻译、中英文翻译,F82H,小号,样本,机械,特性,外文,文献,翻译,中英文
内容简介:
F82H钢小号样本的机械特性, , a Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki-ken 319-1195, Japanb National College of Technology, Hachinohe, Aomori-ken 039-1192, Japanc Hokkaido University, Kita-ku, Sapporo 060-8628, JapanReceived 1 February 2005; received in revised form 12 August 2005; accepted 12 August 2005Available online 24 January 2006摘要:小样品测试技术(SSTT)已经发展且用来调查核材料的机械特性。SSTT在测试反应堆和基于加速器中子中被有效照射量的限制供应控制且充满粒子源头。在这项研究中,新弯曲测试机器得到发展并获得F82H钢的预断裂的t / 2-1/3CVN(Charpy V型槽口)的20毫米长的小弯曲样品的破裂行为,且9毫米长的变形破裂袖珍的弯曲样品(DFMB)和0.18DCT 类型的磁盘和断裂行为在进行检查。F82H钢的试样尺寸对DBTT的影响通过使用t / 2CVN,1/3CVN和t / 2-1/3CVN被检查,并且t / 2-1/3CVN 和1/3CVN的DBTT比t/2-CVN的DBTT要小。在F82H 标准方面的由于氦和位移损害的DBTT行为在大约、 50或100MeV氦离子在0.03 dpa也被小钻床测量进行测试。 2005 Elsevier B.V. 。版权所有。关键字:断裂韧度;辐射效应;低的活化材料;柔软-脆弱过渡;实验技术1. 介绍小样品测试技术(SSTT)已经被发展并研究核材料的机械特性。在测试反应堆和基于加速的中子和电荷离子源15,小样品测试技术被有效辐射量的限制供应推动。在小样品断裂测试技术中,最近努力寻求Odette et al.提出的主要的弯曲变形方法结构的Bcc合金,如现在被首选为熔接反应堆的以铁酸盐为主要成分/马氏永磁体6,7。主要的弯曲变形描述了在测量零部件分裂开始坚韧的完整评价时的一显著扩展和新近发展的修改。在利用小样品获得有意义和有用的断裂韧度信息上的成功导致了一种在更大程度上降低断裂的大小。多种实验已经被设计来分析现有的小量样品的机械性能的数据,如张力的、低的和高的周疲劳、断裂韧度、疲劳的裂缝发展、加压管、锯齿状和预断裂冲击样品以及3毫米直径磁盘。这些样品和技术暂时作为在国际熔化材料熔接设备(IFMIF)的材料反应证实的候选的材料,IFMIF是一基于D-Li的概念设计的高能中子源8。在这研究里,我们检查使用三种0.18DCT(磁压力)样品的、预断裂t/2-1/3CVN(Charpy V槽口) 的F82H钢的断裂韧度,将其表示为t/2-1/3PCCVN,它有20mm长、9mm长的变形且断裂袖珍弯曲样品。0.18DCT 和1/3CVN 样品最近用于在降低活化作用的以铁酸盐为主要成分(RAF)的钢的中子辐照研究的标准断裂样品。但是,0.18DCT 和1/3CVN 样品的体积在象IFMIF那样的照射设备的空间内不比此情况下小。降低样品体积对照射性能来说是很重要的。熔接反应堆的覆盖结构由不同厚度的RAF钢板和钢管组成,而且我们应该检查试样尺寸在断裂韧度的特性上的依赖性。t / 2 CVN 样品降低了1/3CVN样品宽度的一半,而且DFMB样品降低了1/3CVN的宽度和长度的一半。一个新的弯曲测试机器已经生产并获得t / 2-1/3PCCVN和DFMB的小弯曲样品的断裂行为。不同形状的不同的类型的F82H钢的断裂行为已经被检查。在这项研究过程中使用的这类型样品是0.18DCT,1/3CVN,t / 2-1/3CVN,t / 2-1/3PCCVN,DFMB和小钻床(SP)样品。这项研究的目的是: (1) 生产为DFMB和t / 2-1/3PCCVN的小样品测试机器的断裂韧度并且在RT中检查标准F82H钢的断裂行为;( 2 ) 检查标准F82H钢的试样尺寸对柔软-脆弱转变温度(DBTT)的影响。 2. DFMB、t/2-1/3PCCVN和0.18DCT样品的制作0.18DCT、t / 2-1/3PCCVN和DFMB样品的疲劳预断裂通过使用一台Shimazu Lab-5u的疲劳试验机器被引起。0.18DCT 样品(直径为12.5毫米,厚度为4.63毫米) 在TL方向内机械加工而成,因此裂纹扩展与滚方向平行。疲劳预断裂在室温下,裂缝长度与样品宽度的比率(a/W)大约为0.46。随后是对样品厚度的10%的每边上的孔型设计。0.18DCT 样品的疲劳预断裂范围长度大约为1.31.4 mm。第一步的外加负载在40Hz下在108与1079N之间变化,而在下一步中在88和883N之间变化。在t / 2-1/3PCCVN和DFMB样品里,预断裂分别由带有V槽口和U槽口的盘子形状引起,盘子的大小是20mm20mm的正方形,厚度为3.3毫米。在t / 2-1/3PCCVN里,V槽口的深度和角度分别是0.51毫米和。在DFMB样品里,U槽口采用通过使用一个0.15毫米的剪钳来降低槽口,且U槽口的深度和宽度是大约分别是0.5毫米和0.2毫米。为t / 2-1/3PCCVN和DFMB样品准备的盘子负载在40赫兹下,在294和2942N之间变化。在预断裂的程序之后,这个盘子被金属丝切成大约1.7毫米厚的薄片。t / 2-1/3PCCVN和DFMB样品预断裂的长度大约分别是0.9毫米和0.3毫米。裂缝长度和样品厚度的比率,a/W,对DFMB和t / 2-1/3PCCVN样品来说,比值控制在0.40到0.45。在这项研究过程中的样品的化学组成在表1给出。 3.断裂韧度测试3.1.DFMB和t/2-1/3PCCVN的断裂韧度测试图1显示了新的弯曲测试机器,它是人造的用来获得20mm 长的t/2-1/3PCCVN (W: 3.3 mm,H: 1.65 mm)和9mm长的DFMB(W: 1.65 mm, H: 1.65 mm)的非常小弯曲样品的断裂行为的。温度可以被高压和电暖器的液体氮的蒸汽的数量控制,并且它可以从-196变到300 。温度的变化在大约0.5之内。图2(a和b)分别显示了设置在弯曲测试机器的活动场所上的DFMB和t/2-1/3PCCVN样品。0.5毫米距离的刻度被确定在样品背面的装置上。在样品活动场所的样品位置的调节由一个小的千分尺控制,且被固定在机器上。测压元件位置可以通过使用一个线性计量器(Mitutoyo,LGF sereies)来测量,而且它被位置的反馈控制系统控制着。线性计量器位置的精确度是0.5。在带刻度的样品台上的样品位置可以用一个小的工具来调整。十字架形状的头逐渐下降到V槽口样品的中心。样品的位移在如图1(b)中所示的确定在室里的视口中用一个光探针(Keyence,LS-7030T)正确地测量,样品位移的精度为0.15。图3(a和b)分别是在20 下,DFMB和t/2-1/3PCCVN的F82H样品的负载位移曲线。0.1毫米/分的十字架型头是在卸载依从方法下选择的。紧凑和3点弯曲样品的断裂韧度测试在ASTM E 81389和E 182099a的指导下执行。在RT下,DFMB和t / 2PCCVN的断裂韧度大约分别为170和230MPa。这些值比第3.2 部分描述的0.18DCT样品的值小。 Fig. 3. Load and displacement curves obtained from: (a) DFMB and(b) pre-cracked t/2-1/3CVN specimens of F82H-std (low N).3.2. 0.18DCT的断裂韧度测试图4显示了DCT测试机器,它是人造的用来获得0.18DCT样品的断裂行为的。图4(c)显示了放在侧面的F82H标准钢的圆盘压坯试样的计量器。断裂韧度测试可以在温度范围为从-180到300进行,和温度被LN2蒸汽或电暖器系统控制。张力、夹子标准尺位移、十字架型头的位移和温度在测试中测量并且记录。对夹子标准尺位移曲线的负载如图5所示。在卸载依从方法下,十字架型头的位移速度为0.2 mm/min。F82H标准(低的N)的断裂韧度在RT下大约是330MPa。这个值与以前的研究9非常相似4. 小的穿孔器测试小型钻床(SP)测试机器是在一个JMTR热实验室的热室内生产的10。SP测试机器由一个负荷控制器、能装12个样品的转车台、一个真空室和一个炉膛组成。样品座由上面和下面的固定器、一台钻床和一个1毫米直径的钢球组成。钢球和钻床用钻床杆挤着。SP机器的最大负荷和钻床杆的直径分别为5 kN 和8毫米。钻床的速度为0.5毫米/分。SP能量从负载绕度曲线到断裂载荷算起。在这项研究中,厚度为0.3mm 磁盘的F82H样品被在日本原子能研究所的为先进辐射应用的Takasaki离子加速器(TIARA)设备上的AVF回旋加速器在120下的100MeV粒子束从0.6mm的F82H金属薄片照射。位移损耗大约是0.03 dpa,氦的停止范围大约是1.25毫米的。在着个样品中,所有的氦原子都穿过被照射样品。在照射之后,SP试验在日本材料测试反应堆(JMTR)的原子核实验室进行。SP能量被作为温度的函数计算,如图6所示。在这项研究里,由于位移严重损害的DBTT的变化 在此实验中发生,且为23。在以前的50MeV照射实验的研究里11, 替代损害在F82H钢的位移损害也大约0.03dpa和氦离子的计划范围在能量减少的情况下为0毫米到0.4毫米,并且氦原子在大约100下均匀地灌输到厚度为0.3mm的样品上,大约为85 appm灌输到85 appm 的F82H钢的DBTT改变大约为1511。在RT下测的F82H钢的SP数据表2给出。在Kimura的相似回旋加速器氦灌输实验里,在JLM-1钢12的情况下,由于120 appm的氦引起的DBTT的变化大约为20。在我们的以前的数据里,在F82H钢里的DBTT的变化与氦浓度的比大约为0.18 appm He,在JLM-1钢12的情况下Kimura数据的比为0.220.18appm He。这两个在不同的马氏永磁体氦对DBTT的影响的数据非常相似。使用1/3CVN标准由SP数据和1/3CVN数据的关系来决定的DBTT13,在F82H钢里的我们的以前的SP实验获得的DBTT可能被修改为37.5 。在0.03 dpa下,由位移损害引起的DBTT的变化可以被从中子照射实验14的其他数据计算,且其值估计大约为5。在F82H钢的实验里,0.03 dpa的由于位移损害的DBTT的改变值为6,且通过这项研究获得的值与其它研究的结果非常接近。因此,在1/3CVN中,由于85 appm的氦生产的DBTT的变化可能大约为32。现在的研究可以得到同样的结果。另一方面,在马氏永磁体的掺杂硼或镍的实验 ,可以得到关于同位素实验的由氦生产的DBTT的变化的同样的结果。不过,硼或者镍的参和物可能引起严重的辐射脆化。在这个实验过程中,没有像以前研究报告的那样对DBTT的化学额外要素16,17 、DBTT的变化11、照射淬水的增加18,19 以及缺陷群20,21 的影响。因此,断定氦生产能影响DBTT的变化。5.Charpy冲击试验图7显示了使用20 ppm N (low N)的t/2-CVN、1/3CVN and t/2-1/3CVN样品的作为温度函数的样品尺寸的Charpy冲击能的依赖性。断裂面前横截面的上面架子能源是随着样品尺寸的减小而减小的。t / 2CVN、1/3CVN和t / 2-1/3CVN的DBTT分别为82, 104 and 140。众所周知,DBTT与样品(B)的宽度和样品(b)槽口下面的韧带长度有很大关系2225。在反应堆压力容器钢的全长和子长度样品的DBTT的关系如下所示: (1)上式中,和分别为Charpy冲击样品的全长和子长度的过渡温度22。在这项研究过程中的B和b的DBTT值在表3给出,且1/3CVN和t / 2-1/3CVN的DBTT按照式(1)的计算大约为130和-141。t / 2-1/3CVN的DBTT的估计值正好与在这研究内的F82H钢试验数据一致,但是1/3CVN的DBTT估计值比目前试验数据的值低。F82H钢的DBTT比RPV钢的低,且其它因素,如样品的尺寸和密度可能与DBTT的大小相互关系有关。RAF钢的全长和子长度样品的DBTT的实验相互关系还需进一步研究。 6. 摘要(1) 新弯曲测试机器一直被发展并获得F82H钢的破裂行为t/2-1/3PCCVN的20毫米长的小弯曲样品和9毫米长的DFMB和0.18DCT 类型的磁盘和断裂行为在进行检查。(2) F82H钢的试样尺寸对DBTT的影响通过使用t / 2CVN,1/3CVN和t / 2-1/3CVN被检查, 并且t / 2-1/3CVN 和1/3CVN的DBTT比t/2-CVN的DBTT要小。(3) 由于氦生产和位置损害,DBTT手段被小钻床测试检查。致谢作者想对日本原子能研究所的M. Ando和T. Sawai博士表达诚挚的感谢,感谢他们在Oarai JAERI的Oarai里帮助讨论和参加JMTR和JMTR操作的原子核实验室。参考文献1 W.R. Corwin, G.E. Lucas (Eds.), The Use of Small-Scale Specimens for Irradiated Testing, ASTM-STP-888, American Society for Testing and Materials, Philadelphia, PA, 1986.2 W.R. Corwin, G.E. Lucas (Eds.), Small Specimens Test Techniques,ASTM-STP-1328, American Society for Testing and Materials, Philadelphia, PA, 1998.3 M. Sokolov, G.E. Lucas, J. Landes, 4th Symposium on Small Specimen Test Techniques STM-STP-1418, American Society for Testing and Materials, Philadelphia, PA, 2003.4 G.E. Lucas, The development of small specimen mechanical test techniques, J. Nucl. Mater. 117 (1983) 327339.5 P. Jung, A. Hishinuma, G.E. Lucas, H. Ullmaier, Recommendation of miniaturized techniques for mechanical testing of fusion materials in an intense neutron source, J. Nucl. Mater. 232(1996) 186205.6 R. Odette, K. Edsinger, G.E. Lucas, E. Donahue, in: W.R.Corwin, S.T. Rosinski, E. van Walle (Eds.), Small Specimens Test Techniques, ASTM-STP-1328, American Society for Testing and Materials, Philadelphia, PA, 1998, pp. 298321.7 G.R. Odette,Acleavage toughness master curve model, J. Nucl. Mater. 283287 (2000) 120127.8 H. Matusi, IFMIF Status and Perspectives, Presented at ICFRM-10.9 G.E. Lucas, G.R. Odette, K. Edsinger,B.Wirth, J.W. Sheckherd,On the role of strain rate, size and notch acuity on toughness:a comparison of two martensitic stainless steels, ASTM STP 1270 (1996) 790814.10 T. Ishii,M.Ohmi, J. Saito,T. Hoshiya, N. Ooka, S. Jitsukawa,M. Eto, Development of a small specimen test machine to evaluate irradiation embrittlement of fusion reactor materials, J. Nucl.Mater. 283287 (2000) 10231027.11 E.Wakai, S. Jitsukawa, H. Tomita, K. Furuya, M. Sato, K. Oka, T. Tanaka, F. Takada, T. Yamamoto, Y. Kato, Y. Tayama, K. Shiba, S. Ohnuki, Radiation hardening and embrittlement due to He production in F82H steel irradiated at 250 C in JMTR,J. Nucl. Mater., in press.12 A. Kimura, T. Morimura, R. Kasada, H. Matsui, A. Hasegawa,K. Abe, Evaluation of ductilebrittle transition behavior of helium-implanted reduced activation 9Cr-2W martensitic steel by small punch tests, Effects Radiat. Mater. STP 1366 (2000) 626641.13 M. Eto, H. Takahashi, T. Misawa, M. Suzaki, Y. Nishiyama, K. Fukaya, S. Jitsukawa, Development of a miniaturized bulge test (small punch test) for post-irradiation mechanical property evaluation, Small Specimen Test Techniques, ASTM STP 1204(1993) 241255.14 M. Rieth, B. Dafferener, H.-H. Rohrig, Embrittlement behavior of different international low activation alloys after neutron irradiation, J. Nucl. Mater. 258 (1998) 11471152.15 K. Shiba, I. Ioka, J.P. Robertson, M. Suzuki, A. Hishinuma, Mechanical properties of neutron irradiated F82H, in: Euromat- 96, 1996, pp. 265272.Fusion Engineering and Design 81 (2006) 10771084Mechanical properties of small size specimens of F82H steelE. Wakaia, H. Ohtsukaa, S. Matsukawaa, K. Furuyab, H. Tanigawaa, K. Okac,S. Ohnukic, T. Yamamotoa, F. Takadaa, S. JitsukawaaaJapan Atomic Energy Research Institute, Tokai-mura, Ibaraki-ken 319-1195, JapanbNational College of Technology, Hachinohe, Aomori-ken 039-1192, JapancHokkaido University, Kita-ku, Sapporo 060-8628, JapanReceived 1 February 2005; received in revised form 12 August 2005; accepted 12 August 2005Available online 24 January 2006AbstractSmall specimen test technology (SSTT) has been developed to investigate mechanical properties of nuclear materials. SSTThas been driven by limited availability of effective irradiation volumes in test reactors and accelerator-based neutron and chargedparticle sources. In this study, new bend test machines have been developed to obtain fracture behaviors of F82H steel forvery small bend specimens of pre-cracked t/2-1/3CVN (Charpy V-notch) with 20mm length and deformation and fracture minibend specimen (DFMB) with 9mm length and disk compact tension of 0.18DCT (disk compact tension) type, and fracturebehaviors were examined at 20C. The effect of specimen size on ductilebrittle transition temperature (DBTT) of F82H steelwas examined by using 1/2t-CVN, 1/3CVN and t/2-1/3CVN, and it was revealed that DBTT of t/2-1/3CVN and 1/3CVN waslower than that of t/2-CVN. DBTT behaviors due to helium and displacement damage in F82H-std irradiated at about 120C by50 or 100MeV He ions to 0.03dpa were also measured by small punch tests. 2005 Elsevier B.V. All rights reserved.Keywords: Fracture toughness; Radiation effects; Low activation materials; Ductilebrittle transition; Experimental techniques1. IntroductionSmall specimen test technology (SSTT) has beendeveloped to investigate mechanical properties ofnuclear materials. SSTT was driven by limited avail-ability of effective irradiation volumes in test reac-Corresponding author. Tel.: +81 29 282 6563;fax: +81 29 282 5922.E-mail address: wakairealab01.tokai.jaeri.go.jp (E. Wakai).torsandaccelerator-basedneutronandchargedparticlesources15.ThemostrecenteffortsinfractureSSTThave been pursued within the framework of the mas-ter curves-shifts method proposed by Odette et al. forbcc alloys such as ferritic/martensitic steels currentlybeing considered as the first candidate for fusion reac-torstructures6,7.Themastercurves-shiftsrepresentasignificant extension and modification of recent devel-opmentsinmeasuringcleavageinitiationtoughnessforheavy section component integrity assessments. The0920-3796/$ see front matter 2005 Elsevier B.V. All rights reserved.doi:10.1016/j.fusengdes.2005.08.0721078E. Wakai et al. / Fusion Engineering and Design 81 (2006) 10771084success in utilizing small specimens to obtain mean-ingful and useful fracture toughness information isleading to an even more aggressive approach to reduc-ingfracturespecimensizes.Avarietyoftestshavebeendevisedtoextractmechanicalpropertydatafromexist-ing small volume specimens, such as tensile, low andhigh cycle fatigue, fracture toughness, fatigue crackgrowth, pressurized tubes, notched and pre-crackedimpact specimens and 3mm diameter disks. A subsetof these specimens and techniques has been tentativelyselected as candidate for materials response verifica-tion in the International Fusion Materials IrradiationFacility (IFMIF), which is a D-Li-based high-energyneutronsourcecurrentlyundergoingconceptualdesign8.In this study, we have examined the fracture tough-ness of F82H steel using three type specimens of0.18DCT (disk compact tension), pre-cracked t/2-1/3CVN (Charpy V-notch), which is denoted as t/2-1/3PCCVN, with 20mm length and deformation andfracture mini bend specimen (DFMB) with 9mmlength.The0.18DCTand1/3CVNspecimenisrecentlyused for a standard fracture specimen of the neutronirradiation study in reduced-activation ferritic (RAF)steels.Butthevolumesof0.18DCTand1/3CVNspec-imensarenotsosmallinthespaceofirradiationfacilitysuch as IFMIF. It is very important to reduce the spec-imen volume for the performance of irradiation dose.The blanket structure of fusion reactors will be com-posed of RAF steel plates and pipes with differentthickness,andweshouldcheckthedependenceofspec-imen size on the properties of fracture toughness. Thet/2-CVNspecimenreducedthewidthof1/3CVNspec-imen by half, and the DFMB specimen reduced thewidth and length of 1/3CVN by about half.Anewbendtestmachinehasmanufacturedtoobtainfracture behavior for very small bend specimens oft/2-1/3PCCVN and DFMB. The fracture behaviors ofF82H steel with different type of shapes have beenexamined. The types of specimens used in this studyare 0.18DCT, 1/3CVN, t/2-1/3CVN, t/2-1/3PCCVN,DFMB and small punch (SP) specimens. The purposeof this study is: (1) to manufacture fracture toughnesstestingmachinesforthesmallspecimensofDFMBandt/2-1/3PCCVN and to check the fracture behaviors ofF82H-std steel at RT and (2) to examine the effect ofspecimen size on ductilebrittle transition temperature(DBTT) of F82H-std steel.2. Fabrication of DFMB, t/2-1/3PCCVN and0.18DCT specimensThe fatigue pre-cracks of 0.18DCT, t/2-1/3PCCVNand DFMB specimens were induced by using a fatiguetesting machine of Shimazu Lab-5u. The 0.18DCTspecimens (12.5mm diameter and 4.63mm thickness)were machined in the TL orientation so that crackpropagation occurred parallel to the rolling direction.Fatigue pre-cracking was performed at room tem-perature in a condition of crack length to specimenwidth ratio (a/W) of approximately 0.46. This was fol-lowed by side-grooving on each side to the depth of10% of specimen thickness. The length of fatiguepre-crack extension of 0.18DCT specimen was about1.31.4mm. The applied load at the first step waschanged between 108 and 1079N at 40Hz and it waschanged between 88 and 883N at the next step. Inthe t/2-1/3PCCVN and DFMB specimens, the pre-crack was induced in the plate shape with V-notch andU-notch, respectively, and the size of the plates was20mm20mm square and 3.3mm in thickness. Thedepth and angle of V-notch in the t/2-1/3PCCVN were0.51mm and 30, respectively. In the DFMB speci-men, U-notch was adopted to reduce the notch regionby using a 0.15mm wire cutter, and the depth andwidthofU-notchwasabout0.5mmandabout0.2mm,respectively. The load of the plate for the preparationof t/2-1/3PCCVN and DFMB specimens was changedfrom294to2942Nat40Hz.Afterthepre-crackproce-dure, the plate was sliced to about 1.7mm in thicknessby wire cutting. The lengths of the pre-crack of t/2-1/3PCCVN and DFMB specimens were about 0.9mmand about 0.3mm, respectively. The ratio of cracklength to specimen thickness, a/W, for the DFMB andt/2-1/3PCCVN specimens was controlled to the valuesfrom 0.40 to 0.45. The chemical compositions of thespecimens in this study are given in Table 1.3. Fracture toughness testing3.1. Fracture toughness testing of DFMB andt/2-1/3PCCVNFig. 1 shows a new bend test machine, which ismanufacturedtoobtainfracturebehaviorforverysmallbend specimens of t/2-1/3PCCVN with 20mm lengthE. Wakai et al. / Fusion Engineering and Design 81 (2006) 107710841079Table 1Chemical compositions of the specimens used in this study (wt%)MaterialsNCSiMnPSCrWVTaF82H-std (IEA)0.0070.090.070.100.0030.0017.821.980.190.04F82H-std (low N)0.00230.09070.0017.921.970.180.05(W:3.3mm,H:1.65mm)andDFMBwith9mmlength(W: 1.65mm, H: 1.65mm). The displacement rates ofcross head in this machine can be changed from 0.01to 100mm/min. The temperature can be controlled bythe amounts of vapor of liquid nitrogen with high pres-sure and electric heater, and it can be changed from196to300C.Thedeviationoftemperatureiswithinabout 0.5C. Fig. 2(a and b) show DFMB and t/2-1/3PCCVN specimens set in the stage of the bend testmachine, respectively. The scale of 0.5mm distancewas set in the back of specimen setting position. TheFig. 1. A new bend test machine, which is manufactured to obtainfracture behavior for very small bend specimens of pre-cracked1/3CVN with 20mm length and DFMB with 9mm length: (a) con-figuration of the machine and (b) chamber and the optical probe.adjustment of specimen position in the specimen stageis controlled by a small micrometer, which is set in themachine.The position of the load cell can be measured byusing a linear gauge (Mitutoyo, LGF sereies) and it isalso controlled by a feedback control system for theposition. The accuracy of the position for linear gaugeis 0.5?m. The position of the specimen on the spec-imen stage equipped with a scale can be adjusted byusing a small ?-meter instrument. The cross head isdropped gradually to the center of specimen with V-Fig. 2. (a) DFMB specimen and (b) t/2-1/3PCCVN specimen ofF82H-std (low N) set in the stage.1080E. Wakai et al. / Fusion Engineering and Design 81 (2006) 10771084notch. The displacement of the specimen is measuredexactlybyanopticalprobe(Keyence,LS-7030T)fromthe view port set in the chamber as shown in Fig. 1(b),and the accuracy for the displacement of the specimenis within 0.15?m.Fig.3(aandb)isloaddisplacementcurvestestedat20CintheDFMBandt/2-1/3PCCVNF82H-stdspec-imens,respectively.Thecrossheadof0.1mm/minwasselected under the unloading compliance method. Thefracture toughness tests for compact and three-pointbendspecimenswasperformedundertheguidelinesofthe ASTM E 81389 and E 182099a. Fracture tough-nessofDFMBandt/2PCCVNatRTwasabout170and230MPam1/2, respectively. These values were smallerthan the value of 0.18DCT specimen as described inSection . Fracture toughness testing of 0.18DCTFig. 4 shows the DCT test machine, which is man-ufactured to obtain fracture behavior for the 0.18DCTspecimen. Fig. 4(c) shows the outboard gage attachedtooneofthediskcompactspecimenofF82H-stdsteel.This fracture toughness tests can be conducted in thetemperature range from 180 to 300C, and the tem-perature was controlled by the system of LN2vaporor electric heater. Tensile force, clip gauge displace-ment, cross head displacement and temperatures aremeasuredandrecordedduringthetests.TheloadversusFig. 3. Load and displacement curves obtained from: (a) DFMB and(b) pre-cracked t/2-1/3CVN specimens of F82H-std (low N).Fig. 4. 0.18DCT machine: (a) chamber inside, (b) front of chamber and (c) clip gauge and specimen.E. Wakai et al. / Fusion Engineering and Design 81 (2006) 107710841081Fig. 5. Load and displacement curves obtained from: (a) DFMBspecimen and (b) t/2-1/3PCCVN of F82H-std (low N).clip gage displacement curves are shown in Fig. 5. Thedisplacement rate of the cross head was controlled at0.2mm/min under the unloading compliance method.Fracture toughness of F82H-std (low N) at RT wasabout 330MPam1/2. This value is very similar to thevalue of previous study 9.4. Small punch testingSmallpunch(SP)testmachinewasmanufacturedina hot cell of the JMTR hot laboratory 10. The SP testmachine consists of a load controller, turntable with 12specimen holders, a vacuum chamber and a furnace.The specimen holder consists of the upper and lowerholders, a punch and a steel ball of 1mm diameter. Asteel ball and a punch were pushed by the punch rod.The maximum load and stroke of the punch rod forthe SP machine are 5kN and 8mm, respectively. Thepunch speed was controlled at 0.5mm/min. SP energywas calculated from the area under the loaddeflectioncurve up to the fracture load.In this study, the F82H specimens of TEM disktype with 0.3mm thickness were irradiated throughFig. 6. SP energy as a function of temperature in F82H-std (IEA).F82H foil of 0.6mm at about 120C with a beam of100MeV He2+particles by AVF cyclotron at TakasakiIon Accelerators for Advanced Radiation Application(TIARA) facility of JAERI. The displacement dam-age was about 0.03dpa and the stopping range ofheliumwasabout1.25mm.Inthisspecimen,allheliumatoms passed through the irradiated specimens. Afterthe irradiation, the SP tests were performed in theJapan Materials Testing Reactor (JMTR) Hot Labo-ratory. The SP energy was calculated as a functionof temperature as shown in Fig. 6. In this study, thechange of DBTT due to displacement damage hardlyoccurred in this experiment and it was about 23C.In the previous study 11 of 50MeV He2+irradia-tion experiment, displacement damage in F82H steelwas also about 0.03dpa and the projected range of thehelium ions controlled under an energy degrader wasfrom 0 to 0.4mm, and helium atoms were uniformlyimplantedtoabout85appmatabout100Cinthespec-imen with 0.3mm in thickness. The shift of DBTT forthe F82H steel implanted with 85appmHe was about15C 11. The summaries of SP data tested at RTin F82H steel were given in Table 2. In the similarcyclotron helium implantation experiment of Kimura,Table 2SP-yield load, SP-maximum load, cracking load, deflection at a maximum of load and total elongation of F82H steels tested at RT by SPDisplacementdamage (dpa)He (appm)Yield load(N)Maximumload (N)Crackingload (N)Deflection atPmax(mm)Total deflection(mm)F82H001235223480.380.78F82H (50MeV He)0.03851204933370.380.75F82H (100MeV He)0.0301234993500.480.741082E. Wakai et al. / Fusion Engineering and Design 81 (2006) 10771084it was reported that the shift of DBTT due to heliumimplantation of 120appm was about 20C in JLM-1steel 12. In our previous data, the ratio of the shiftof DBTT to helium concentration in F82H steel wasabout 0.18C/appmHe, and the ratio for Kimura datain JLM-1 steel was 0.22C/appmHe. These two datafor the helium effect on DBTT in different marten-sitic steels were very similar. The DBTT obtained bythe our previous SP experiments in F82H steel couldbe modified as 37.5C for the DBTT measured usinga 1/3CVN standard as determined from the correla-tion between SP data and 1/3CVN data 13. The shiftof DBTT due to displacement damage at 0.03dpa canbe evaluated from the other data of neutron irradiationexperiment 14 and the value is estimated as about5C. In this experiment of F82H steel, the DBTT shiftdue to displacement damage of 0.03dpa can be eval-uated as about 6C, and the value obtained by thisstudy is very close to the result of the other study.Therefore, the shift of DBTT due to helium produc-tion of 85appm could be concluded to be about 32Cin the 1/3CVN. In present study, the same result wasobtained.Ontheotherhands,inboronornickeldopingexperiments of martensitic steels, similar results of theshiftofDBTTduetoheliumproductionontheisotope-tailoring experiments were reported 14,15. However,there was a possibility that the addition of boron ornickel may cause severe irradiation embrittlement. Inthis experiment, there are no effects of chemical addi-tional element on DBTT 16,17, the shift of DBTT11,theincrementofirradiationhardening18,19anddefect clusters 20,21 as reported in previous studies.It is therefore concluded that helium production canaffect the shift of DBTT.5. Charpy impact testsFig. 7 shows the dependence of Charpy impactenergy on specimen size as a function of temperature,using t/2-CVN, 1/3CVN and t/2-1/3CVN specimensof F82H-std containing 20ppm N (low N). The uppershelf energy per cross-section in fracture plane wasdecreasingwiththereducingspecimensize.TheDBTTof t/2-CVN, 1/3CVN and t/2-1/3CVN was 82, 104and140C,respectively.ItiswellknownthatDBTTdependsstronglyonthewidthofspecimen(B),andthelength of ligament below the notch of the specimen (b)Fig. 7. Dependence of specimen size on Charpy impact energy as afunction of temperature, using t/2-CVN, 1/3CVN and t/2-1/3CVNspecimens of F82H-std (low N).2225. The empirical correlations of DBTT of full-size and sub-size specimens in reactor pressure vessel(RPV) steels were proposed:DBTTfull-size= DBTTsub-size+ 98 15.1 ln(Bb2),(1)where DBTTfull-sizeand DBTTsub-sizeare transitiontemperature for full-size and sub-size Charpy impactspecimens, respectively 22. The values of DBTT, Band b in this study are given in Table 3, and the DBTTfor 1/3CVN and t/2-1/3CVN can be estimated as about130 and 141C, respectively, by using Eq. (1). Theestimated value of DBTT for t/2-1/3CVN was goodcorresponds to the experimental data of F82H steel inthisstudy,buttheestimatedvalueofDBTTfor1/3CVNwas lower than the value of the present experimentalE. Wakai et al. / Fusion Engineering and Design 81 (2006) 107710841083Table 3DBTT, width of specimen (B) and the length of ligament below the notch (b), of F82H steel for t/2-CVN, 1/3CVN and t/2-1/3CVN Charpyimpact specimensFull-size or sub-sizeB (mm)b (mm)DBTT (C) (experimental data)DBTT (C) (estimation)t/2-CVNSub-size5882(82)1/3CVNSub-size3.32.79104130t/2-1/3CVNSub-size1.652.79140141CVNFull-size10881.6The estimation of DBTT in t/2-CVN, 1/3CVN and CVN was calculated by using a data of t/2-CVN.data. The DBTT of F82H steel was lower than thatof RPV steel, and the other factors such as the sizeand density of inclusions may be related to the correla-tions of DBTT for the size dependence. Further studyis needed for the empirical correlations of DBTT offull-size and sub-size specimens in RAF steels.6. Summary(1) New bend test machines have been developedto obtain fracture behaviors of F82H steel forvery small bend specimens of t/2-1/3PCCVN with20mm length and DFMB with 9mm length anddisk compact tension of 0.18DCT type, and frac-ture behaviors were examined at 20C.(2) The effect of specimen size on DBTT of F82Hsteel was examined by using t/2-CVN, 1/3CVNand t/2-1/3CVN, and it was revealed that DBTTof t/2-1/3CVN and 1/3CVN was lower than that oft/2-CVN.(3) DBTTshiftduetoheliumproductionanddisplace-ment damage was examined by small punch tests.AcknowledgementsThe authors would like to express sincere thanks toDrs. M. Ando and T. Sawai of JAERI for their helpfuldiscussions and the staffs of hot laboratory of JMTRand JMTR operation in Oarai establishment of JAERI.References1 W.R.Corwin,G.E.Lucas(Eds.),TheUseofSmall-ScaleSpec-imens for Irradiated Testing, ASTM-STP-888, American Soci-ety for Testing and Materials, Philadelphia, PA, 1986.2 W.R. Corwin, G.E. Lucas (Eds.), Small Specimens Test Tech-niques, ASTM-STP-1328, American Society for Testing andMaterials, Philadelphia, PA, 1998.3 M. Sokolov, G.E. Lucas, J. Landes, 4th Symposium on SmallSpecimen Test Techniques STM-STP-1418, American Societyfor Testing and Materials, Philadelphia, PA, 2003.4 G.E. Lucas, The development of small specimen mechanicaltest techniques, J. Nucl. Mater. 117 (1983) 327339.5 P.Jung,A.Hishinuma,G.E.Lucas,H.Ullmaier,Recommenda-tionofminiaturizedtechniquesformechanicaltestingoffusionmaterials in an intense neutron source, J. Nucl. Mater. 232(1996) 186205.6 G.R. Odette, K. Edsinger, G.E. Lucas, E. Donahue, in: W.R.Corwin, S.T. Rosinski, E. van Walle (Eds.), Small SpecimensTestTechniques,ASTM-STP-1328,AmericanSocietyforTest-ing and Materials, Philadelphia, PA, 1998, pp. 298321.7 G.R.Odette,Acleavagetoughnessmastercurvemodel,J.Nucl.Mater. 283287 (2000) 120127.8 H.Matusi,IFMIFStatusandPerspectives,PresentedatICFRM-10.9 G.E.Lucas,G.R.Odette,K.Edsinger,B.Wirth,J.W.Sheckherd,On the role of strain rate, size and notch acuity on toughness:a comparison of two martensitic stainless steels, ASTM STP1270 (1996) 790814.10 T.Ishii,M.Ohmi,J.Saito,T.Hoshiya,N.Ooka,S.Jitsukawa,M.Eto, Development of a small specimen test machine to evaluateirradiation embrittlement of fusion reactor materials, J. Nucl.Mater. 283287 (2000) 10231027.11 E. Wakai, S. Jitsukawa, H. Tomita, K. F
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:F82H钢小号样本的机械特性外文文献翻译、中英文翻译
链接地址:https://www.renrendoc.com/p-83062434.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!