




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2018-2019学年上海市青浦高级中学高三上学期9月质量检测数学试题一、单选题1设集合则A对任意实数a,B对任意实数a,(2,1)C当且仅当a0时,(2,1)D当且仅当 时,(2,1)【答案】D【解析】分析:求出及所对应的集合,利用集合之间的包含关系进行求解.详解:若,则且,即若,则,此命题的逆否命题为:若,则有,故选D.点睛:此题主要结合充分与必要条件考查线性规划的应用,集合法是判断充分条件与必要条件的一种非常有效的方法,根据成立时对应的集合之间的包含关系进行判断. 设,若,则;若,则,当一个问题从正面思考很难入手时,可以考虑其逆否命题形式.2在平面直角坐标系中,记为点到直线的距离,当、变化时,的最大值为( )ABCD【答案】C【解析】为单位圆上一点,而直线过点,则根据几何意义得的最大值为.【详解】为单位圆上一点,而直线过点,所以的最大值为,选C.【点睛】与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面解决此类问题的主要思路是利用圆的几何性质将问题转化3某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A1B2C3D4【答案】C【解析】分析:根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数.详解:由三视图可得四棱锥,在四棱锥中,由勾股定理可知:,则在四棱锥中,直角三角形有:共三个,故选C.点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解.4设的边上一定点满足,且对于边上任一点,恒有,则( )ABCD【答案】D【解析】设,则,过点作的垂线,垂足为,在上任取一点,设,则由数量积的几何意义可得恒成立,只需即可,由此能求出是等腰三角形,【详解】设,则,过点作的垂线,垂足为,在上任取一点,设,则由数量积的几何意义可得,于是恒成立,整理得恒成立,只需即可,于是,因此,即是的中点,故是等腰三角形,所以故选:D.【点睛】本题考查平面向量的运算、向量的模及向量的数量积的概念、向量运算的几何意义的应用,考查利用向量解决简单的几何问题的能力.二、填空题5已知集合A=x|x|2,B=2,0,1,2,则AB=_【答案】0,1【解析】根据集合的交运算进行计算即可【详解】因此AB=故答案为:【点睛】本题主要考查集合的基本运算,根据集合交集的定义是解决本题的关键比较基础6若函数,则_【答案】【解析】根据偶次根式被开方数大于等于零可求得定义域,取交集得到的定义域,将解析式相加可得所求结果.【详解】定义域为:;定义域为:的定义域为故答案为:【点睛】本题考查函数解析式的求解,易错点是忽略了函数定义域的要求,造成所求函数的定义域缺失.7在的二项展开式中,第四项的系数为_.【答案】【解析】利用二项展开式的通项公式,求得第四项的系数.【详解】二项展开式中,第四项的系数为.故答案为:【点睛】本小题主要考查二项展开式通项公式的运用,属于基础题.8某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为_【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.9已知某圆锥体的底面半径,沿圆锥体的母线把侧面展开后得到一个圆心角为的扇形,则该圆锥体的表面积是 【答案】【解析】试题分析:由已知沿圆锥体的母线把侧面展开后得到的扇形的弧长为,从而其母线长为,从而圆锥体的表面积为;故答案为:【考点】圆锥体的表面积10已知直线与直线,记 ,则D=0是直线与直线平行的_(选填“充分非必要”、“必要非充分”、“充要”、“既非充分又非必要”)条件.【答案】必要非充分【解析】解求得的值.由此求得的值.由此判断出充分、必要条件.【详解】令得,解得或.当时,解得.故D=0是直线与直线平行的必要非充分条件.故答案为:必要非充分【点睛】本小题主要考查两条直线平行的条件,考查行列式的计算,考查充分、必要条件的判断,属于基础题.11设函数,若对任意的实数都成立,则的最小值为_【答案】【解析】根据题意取最大值,根据余弦函数取最大值条件解得的表达式,进而确定其最小值.【详解】因为对任意的实数x都成立,所以取最大值,所以,因为,所以当时,取最小值为.【点睛】函数的性质(1).(2)周期(3)由求对称轴,最大值对应自变量满足,最小值对应自变量满足,(4)由求增区间;由求减区间.12若x,y满足x+1y2x,则2yx的最小值是_【答案】3【解析】【详解】分析:作可行域,根据目标函数与可行域关系,确定最小值取法.详解:作可行域,如图,平移直线,由图可知直线过点A(1,2)时,取最小值3.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.13能说明“若对任意的都成立,则在上是增函数”为假命题的一个函数是_.【答案】(答案不唯一)【解析】根据题目所给命题为假命题,构造函数在区间满足条件“对任意的都成立”且不是增函数.【详解】由于原命题是假命题,故存在“对任意的都成立”且不是增函数.设为二次函数,则在必须是先增后减,此时只需二次函数对称轴满足,且二次项系数即可.如.故答案为:(答案不唯一)【点睛】本小题主要考查函数的单调性和最值,考查二次函数的性质,属于基础题.14已知椭圆,双曲线,若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的焦距与长轴长的比值为_.【答案】【解析】根据正六边形的性质以及椭圆的定义求得,由此求得椭圆M的焦距与长轴长的比值(也即离心率)【详解】由正六边形的性质得椭圆上一点到两焦点距离之和为,根据椭圆的定义可知,所以椭圆M的焦距与长轴长的比值为.故答案为:.【点睛】本小题主要考查椭圆的定义,考查椭圆的几何性质,考查正六边形的几何性质,属于基础题.15在中,角所对的边分别为,的平分线交于点D,且,则的最小值为_【答案】9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.16在实数集R中,我们定义的大小关系“”为全体实数排了一个“序”.类似地,我们在复数集C上也可以定义一个称为“序”的关系,记为“”.定义如下:对于任意两个复数:当且仅当“”或“”且“”.按上述定义的关系“”,给出以下四个命题:若,则;若,则;若,则对于任意;对于复数,若,则.其中所有真命题的序号为_.【答案】【解析】根据新定义“序”的关系,对四个命题逐一分析,由此判断出真命题的序号.【详解】对于,由于,所以“”或“且”. 当,满足但,所以错误.对于,根据“序”的关系的定义可知,复数的“序”有传递性,所以正确.对于,设,由,所以“”或“且”,可得“”或“且”,即成立,所以正确.对于,当时,故错误.故答案为:【点睛】本小题主要考查新定义复数“序”的关系的理解和运用,考查分析、思考与解决问题的能力,属于基础题.三、解答题17已知函数.(1)求的最小正周期和单调递减区间;(2)若在区间上恰好有十个零点,求正数的最小值.【答案】(1)最小正周期为,递减区间为;(2).【解析】(1)利用降次公式、二倍角公式和辅助角公式化简解析式,进而求得的最小正周期和的单调减区间.(1)令求得函数的零点,结合在区间上恰好有十个零点,求得的最小值.【详解】(1),所以的最小正周期为.由,解得,所以的递减区间为.(2)令,即,即.由于内,恰有十个零点,故由得取,恰好个零点.当时,.所以正数的最小值为.【点睛】本小题主要考查利用二倍角公式、降次公式和辅助角公式进行三角恒等变换,考查三角函数最小正周期、单调区间的求法,考查三角函数零点问题,属于中档题.18如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值【答案】(1)(2)【解析】分析:(1)先建立空间直角坐标系,设立各点坐标,根据向量数量积求得向量的夹角,再根据向量夹角与异面直线所成角的关系得结果;(2)利用平面的方向量的求法列方程组解得平面的一个法向量,再根据向量数量积得向量夹角,最后根据线面角与所求向量夹角之间的关系得结果.详解:如图,在正三棱柱ABCA1B1C1中,设AC,A1C1的中点分别为O,O1,则OBOC,OO1OC,OO1OB,以为基底,建立空间直角坐标系Oxyz因为AB=AA1=2,所以(1)因为P为A1B1的中点,所以,从而,故因此,异面直线BP与AC1所成角的余弦值为(2)因为Q为BC的中点,所以,因此,设n=(x,y,z)为平面AQC1的一个法向量,则即不妨取,设直线CC1与平面AQC1所成角为,则,所以直线CC1与平面AQC1所成角的正弦值为点睛:本题考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.19已知抛物线C:=2px经过点(1,2)过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N()求直线l的斜率的取值范围;()设O为原点,求证:为定值【答案】(1) 取值范围是(-,-3)(-3,0)(0,1)(2)证明过程见解析【解析】【详解】分析:(1)先确定p,再设直线方程,与抛物线联立,根据判别式大于零解得直线l的斜率的取值范围,最后根据PA,PB与y轴相交,舍去k=3,(2)先设A(x1,y1),B(x2,y2),与抛物线联立,根据韦达定理可得,再由,得,利用直线PA,PB的方程分别得点M,N的纵坐标,代入化简可得结论.详解:解:()因为抛物线y2=2px经过点P(1,2),所以4=2p,解得p=2,所以抛物线的方程为y2=4x由题意可知直线l的斜率存在且不为0,设直线l的方程为y=kx+1(k0)由得依题意,解得k0或0k1又PA,PB与y轴相交,故直线l不过点(1,-2)从而k-3所以直线l斜率的取值范围是(-,-3)(-3,0)(0,1)()设A(x1,y1),B(x2,y2)由(I)知,直线PA的方程为令x=0,得点M的纵坐标为同理得点N的纵坐标为由,得,所以所以为定值点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.20数列,定义为数列的一阶差分数列,其中.(1)若,试断是否是等差数列,并说明理由;(2)若证明是等差数列,并求数列的通项公式;(3)对(2)中的数列,是否存在等差数列,使得对一切都成立,若存在,求出数列的通项公式;若不存在,请说明理由.【答案】(1)是等差数列,理由见解析;(2)证明见解析,;(3)存在,且.【解析】(1)通过计算证得是等差数列.(2)根据,得到,利用凑配法证得是等差数列,并求得数列的通项公式.(3)先求得,由此求得,再利用组合数公式,证得符合要求.【详解】(1)由于,所以,所以,且.所以是首项为,公差为的等差数列.(2)由于,所以,即,两边除以得,所以是首项为,公差为的等差数列,故,即.(3)存在,且符合题意.依题意.当时,;当时,即,而是等差数列,故只能.下证符合题意.由于,所以根据组合数公式有符合题意.【点睛】本小题主要考查等差数列的证明,考查等差数列通项公式,考查组合数公式,考查化归与转化的数学思想方法,属于中档题.21设n为正整数,集合A=对于集合A中的任意元素和,记M()=()当n=3时,若,求M()和M()的值;()当n=4时,设B是A的子集,且满足:对于B中的任意元素,当相同时,M()是奇数;当不同时,M()是偶数求集合B中元素个数的最大值; ()给定不小于2的n,设B是A的子集,且满足:对于B中的任意两个不同的元素,M()=0写出一个集合B,使其元素个数最多,并说明理由【答案】(1)2,1;(2) 最大值为4;(3) 【解析】【详解】(),。()考虑数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 宾馆公司合同付款管理办法
- 湖北省武汉市武珞路一校四区2024-2025学年八年级下学期期中语文试题(含答案)
- 写人写物初中范文
- 2025年A股市场前景及投资研究报告:“政策底”牛市起点
- 岩石的脚印赏析课件
- 岩土力学课件应力场
- 小黄车安全驾驶知识培训课件
- 房地产开发项目计件工资劳动合同
- 个人与公司间的土地流转借款合同
- 区域商业街店面联合经营合伙协议
- 直播助农培训课件
- 劳动课美味凉拌菜课件
- 2025黑龙江伊春市铁力市招募公益性岗位人员备考练习题库及答案解析
- 铁路车间职工思政课课件
- 2025年汽车租赁公司车辆托管及运营管理合同
- 情感营销培训课件
- 企业向个人还款合同范本
- 儿童组织细胞坏死性淋巴结炎诊疗共识解读
- 钢模板安全知识培训课件
- 新学期三年级班主任工作计划(16篇)
- 2025广东汕尾市海丰县公安局招聘警务辅助人员50人备考题库及答案解析
评论
0/150
提交评论