数学汇编立体几何计算题_第1页
数学汇编立体几何计算题_第2页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2006年高考数学汇编 立体几何计算题ABCDEFOP第19题图H1(安徽卷19)如图,P是边长为1的正六边形ABCDEF所在平面外一点,P在平面ABC内的射影为BF的中点O。()证明;()求面与面所成二面角的大小。2(北京卷理17)如图,在底面为平行四边形的四棱锥 PABCD 中,ABAC,PA平面 ABCD,且 PA=PB,点 E 是 PD 的中点. ()求证:ACPB; ()求证:PB/平面 AEC; ()求二面角 EACB 的大小. 3(北京卷文17)如图,是正四棱住()求证:; ()若二面角的大小为,求异面直线。 4(福建卷理18)如图,四面体ABCD中,O、E分别是BD、BC的中点,(I)求证:平面BCD;(II)求异面直线AB与CD所成角的大小;(III)求点E到平面ACD的距离。图55(广东卷17)如图5所示,、分别世、的直径,与两圆所在的平面均垂直,.是的直径,,.(I)求二面角的大小;(II)求直线与所成的角.6(湖北卷18)如图,在棱长为1的正方体中,是侧棱上的一点,。()、试确定,使直线与平面所成角的正切值为;()、在线段上是否存在一个定点Q,使得对任意的,D1Q在平面上的射影垂直于,并证明你的结论。7(湖北卷文18)如图,已知正三棱柱的侧棱长和底面边长为1,是底面边上的中点,是侧棱上的点,且。()求二面角的平面角的余弦值;()求点到平面的距离。8(湖南卷18)如图4, 已知两个正四棱锥的高分别为1和2, () 证明: ; () 求异面直线所成的角;() 求点到平面的距离.9(江苏卷18)请您设计一个帐篷。它下部的形状是高为1m的正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如右图所示)。试问当帐篷的顶点O到底面中心的距离为多少时,帐篷的体积最大?10(江苏卷19)在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EBCF:FACP:PB1:2(如图1)。将AEF沿EF折起到的位置,使二面角A1EFB成直二面角,连结A1B、A1P(如图2)()求证:A1E平面BEP;()求直线A1E与平面A1BP所成角的大小;图1图2()求二面角BA1PF的大小(用反三角函数表示)11(江西卷理20)如图,在三棱锥ABCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD,BDCD1,另一个侧面是正三角形(1)求证:ADBC(2)求二面角BACD的大小(3)在直线AC上是否存在一点E,使ED与面BCD成30角?若存在,确定E的位置;若不存在,说明理由。12(江西卷文20)如图,在长方体ABCDA1B1C1D1,中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)证明:D1EA1D;(2)当E为AB的中点时,求点E到面ACD1的距离;(3)AE等于何值时,二面角D1ECD的大小为.13(辽宁卷18)已知正方形.、分别是、的中点,将沿折起,如图所示,记二面角的大小为.(I)证明平面;(II)若为正三角形,试判断点在平面内的射影是否在直线上,证明你的结论,并求角的余弦值.AACBDEFBCDEF14(全国II卷17)如图,在直三棱柱中,、分别为、的中点。(I)证明:ED为异面直线与的公垂线;(II)设求二面角的大小。15(全国卷)如图,、是互相垂直的异面直线,MN是它们的公垂线段。点A、B在上,C在上,AM=MB=MN。()证明ACNB()若,求NB与平面ABC所成角的余弦值.16(山东卷19)ABCA1VB1C1如图,已知平面平行于三棱锥的底面ABC,等边所在的平面与底面ABC垂直,且ACB=90,设(1)求证直线是异面直线与的公垂线;(2)求点A到平面VBC的距离;(3)求二面角的大小。17(山东卷文20)如图,已知四棱锥P-ABCD的底面ABCD为等腰梯形,与相交于点,且顶点在底面上的射影恰为点,又.()求异面直接与所成角的余弦值;()求二面角的大小;()设点M在棱上,且为何值时,平面.18(陕西卷18)如图,=l , A, B,点A在直线l 上的射影为A1, 点B在l的射影为B1,已知AB=2,AA1=1, BB1=, 求: () 直线AB分别与平面,所成角的大小; ()二面角A1ABB1的大小.ABA1B1l第19题图 19(四川卷19)如图,长方体ABCD-中,E、P分别是BC、的中点,M、N分别是AE、的中点,()求证:;()求二面角的大小;()求三棱锥PDEN的体积。20(上海卷19)在直三棱柱中,.(1)求异面直线与所成的角的大小;(2)若与平面S所成角为,求三棱锥的体积。21(天津卷19)如图,在五面体中,点是矩形的对角线的交点,面是等边三角形,棱(1)证明/平面;(2)设,证明平面22(浙江卷理17)如图,在四棱锥中,底面为直角梯形, 底面,且,分别为、的中点。()求证:;()求与平面所成的角。23如图,在四棱锥 PABCD中,底面为直角梯形, ADBC,BAD=90,PA底面 ABCD, 且 PA=AD=AB=2BC,M、N分别为 PC、PB的中点。 ()求证:PBDM; ()求 BD与平面 ADMN所成的角。24(重庆卷19) 如图,在四棱锥PABCD中,PA底面ABCD,DAB为直角,ABCD,AD=CD=24B,E、F分别为PC、CD的中点.()试证:CD平面BEF;()设PAkAB,且二面角E-BD-C的平面角大于,求k的取值范围.25(重庆卷文20) 如图,在正四棱柱中,为上使的点。平面交于,交的延长线于,求:()异面直线与所成角的大小;()二面角的正切值;参考答案1解:()在正六边形ABCDEF中,为等腰三角形,P在平面ABC内的射影为O,PO平面ABF,AO为PA在平面ABF内的射影;O为BF中点,AOBF,PABF。()PO平面ABF,平面PBF平面ABC;而O为BF中点,ABCDEF是正六边形 ,A、O、D共线,且直线ADBF,则AD平面PBF;又正六边形ABCDEF的边长为1,。过O在平面POB内作OHPB于H,连AH、DH,则AHPB,DHPB,所以为所求二面角平面角。在中,OH=,=。在中,;而()以O为坐标原点,建立空间直角坐标系,P(0,0,1),A(0,,0),B(,0,0),D(0,2,0),设平面PAB的法向量为,则,得,;设平面PDB的法向量为,则,得,;2(17)(共 17 分) 解法一: ()PA平面 ABCD,AB 是 PB 在平面 ABCD 上的射影. 又ABAC,AC平面ABCD, ACPB. ()连接BD,与 AC 相交于 O,连接 EO. ABCD 是平行四边形, O 是 BD 的中点 又 E 是 PD 的中点 EOPB. 又 PB平面 AEC,EO平面 AEC, PB平面 AEC. ()取 BC 中点 G,连接 OG,则点 G 的坐标为,=.又是二面角的平面角 二面角E-AC-B的大小为.34方法一:(I)证明:连结OC在中,由已知可得而即平面(II)解:取AC的中点M,连结OM、ME、OE,由E为BC的中点知直线OE与EM所成的锐角就是异面直线AB与CD所成的角在中,是直角斜边AC上的中线,异面直线AB与CD所成角的大小为(III)解:设点E到平面ACD的距离为在中,而点E到平面ACD的距离为方法二:(I)同方法一。(II)解:以O为原点,如图建立空间直角坐标系,则异面直线AB与CD所成角的大小为(III)解:设平面ACD的法向量为则令得是平面ACD的一个法向量。又点E到平面ACD的距离5解:()AD与两圆所在的平面均垂直,ADAB,ADAF,故BAD是二面角BADF的平面角,依题意可知,ABCD是正方形,所以BAD450.即二面角BADF的大小为450;()以O为原点,BC、AF、OE所在直线为坐标轴,建立空间直角坐标系(如图所示),则O(0,0,0),A(0,0),B(,0,0),D(0,8),E(0,0,8),F(0,0)所以,设异面直线BD与EF所成角为,则直线BD与EF所成的角为6解法1:()连AC,设AC与BD相交于点O,AP与平面相交于点,,连结OG,因为PC平面,平面平面APCOG,故OGPC,所以,OGPC.又AOBD,AOBB1,所以AO平面,故AGO是AP与平面所成的角.在RtAOG中,tanAGO,即m.所以,当m时,直线AP与平面所成的角的正切值为.()可以推测,点Q应当是AICI的中点O1,因为D1O1A1C1, 且 D1O1A1A ,所以 D1O1平面ACC1A1,又AP平面ACC1A1,故 D1O1AP.那么根据三垂线定理知,D1O1在平面APD1的射影与AP垂直。7解法1:()因为M是底面BC边上的中点,所以AMBC,又AMC,所以AM面BC,从而AMM, AMNM,所以MN为二面角,AMN的平面角。又M=,MN=,连N,得N,在MN中,由余弦定理得。故所求二面角AMN的平面角的余弦值为。()过在面内作直线,为垂足。又平面,所以AMH。于是H平面AMN,故H即为到平面AMN的距离。在中,HM。故点到平面AMN的距离为1。解法2:()建立如图所示的空间直角坐标系,则(0,0,1),M(0,0),C(0,1,0), N (0,1,) , A (),所以,,。因为所以,同法可得。故为二面角AMN的平面角故所求二面角AMN的平面角的余弦值为。()设n=(x,y,z)为平面AMN的一个法向量,则由得 故可取设与n的夹角为a,则。所以到平面AMN的距离为。8解法一()连接AC、BD,设ACBDO因为PABCD与QABCD都是正四棱锥,所以PO平面ABCD,QO平面ABCD从而P、O、Q三点在一条直线上,所以PQ平面ABCD(II)由题设知,ABCD是正方形,所以由(I),平面,故可以分别以直线CA、DB、QP为轴,轴,轴建立空间直角坐标系(如图),由题设条件,相关各点的坐标分别是,于是从而异面直线AQ与PB所成的角是()由(),点D的坐标是,设(x,y,z)是平面QAD的一个法向量,由解法二()取AD的中点M,连接PM,QM,因为PABCD与QABCD都是正四棱锥,所以ADPM,ADOM()由(),点D的坐标是解法二(),点D的坐标是解法二()取AD的中点M,连接PM,QM.因为PABCD与QABCD都是正四棱锥,所以ADPM,ADQM从而AD平面ABCD。()连接AC,BD,设ACBD0,由PQ平面ABCD及正四棱锥的性质可知O在PQ上,从而P,A,Q,C.取OC的中点N,连接PN(或其补角)是异面直线,AQ与PB所成的角,连接BN,因为9解设OO1为,则由题设可得正六棱锥底面边长为:,(单位:)故底面正六边形的面积为:=,(单位:)帐篷的体积为:(单位:)求导得。令,解得(不合题意,舍去),当时,为增函数;当时,为减函数。当时,最大。答:当OO1为时,帐篷的体积最大,最大体积为。10不妨设正三角形的边长为3,则(I)在图1中,取BE的中点D,连结DF,AEEB=CFFA=12,AF=AD=2,而A=60o,ADF为正三角形。又AE=DE=1,EFAD。在图2中,A1EEF,BEEF,A1EB为二面角A1EFB的一个平面角,由题设条件知此二面角为直二面角,A1EBE。又BEEF=E,A1E面BEF,即A1E面BEP。(II)在图2中,A1E不垂直于A1B,A1E是面A1BP的斜线,又A1E面BEP,A1EBP,BP垂直于A1E在面A1BP内的射影(三垂线定理的逆定理)设A1E在面A1BP内的射影为A1Q,且A1Q交BP于Q,则EA1Q就是A1E与面A1BP所成的角,且BPA1Q。在EBP中,BE=BP=2,EBP=60o,EBP为正三角形,BE=EP。又A1E面BEP,A1B=A1P,Q为BP的中点,且EQ=,而A1E=1,在RtA1EQ中,即直线A1E与面A1BP所成角为60o。(III)在图3中,过F作FM于M,连结QM、QF。CF=CP=1,C=60o,FCP为正三角形,故PF=1,又PQ=BP=1,PF=PQA1E面BEP,EQ=EF=,A1F=A1Q,A1FPA1QP,故A1PF=A1PQ由及MP为公共边知FMPQMP,故QMP=FMP=90o,且MF=MQ,FMQ为二面角BA1PF的一个平面角。在RtA1QP中,A1Q=A1F=2,PQ=1,A1P=,MQA1P,MQ=,MF=。在FCQ中,FC=1,QC=2,C=60o,由余弦定理得QF=,在FMQ中,二面角BA1PF的的大小为。注此题还可以用向量法来解。(略)11解法一:(1)方法一:作AH面BCD于H,连DH。ABBDHBBD,又AD,BD1ABBCAC BDDC又BDCD,则BHCD是正方形,则DHBCADBC方法二:取BC的中点O,连AO、DO则有AOBC,DOBC,BC面AODBCAD(2)作BMAC于M,作MNAC交AD于N,则BMN就是二面角BACD的平面角,因为ABACBCM是AC的中点,且MNCD,则BM,MNCD,BNAD,由余弦定理可求得cosBMNBMNarccos(3)设E是所求的点,作EFCH于F,连FD。则EFAH,EF面BCD,EDF就是ED与面BCD所成的角,则EDF30。设EFx,易得AHHC1,则CFx,FD,tanEDF解得x,则CEx1故线段AC上存在E点,且CE1时,ED与面BCD成30角。解法二:此题也可用空间向量求解,解答略12解法(一)(1)证明:AE平面AA1DD1,A1DAD1,D1EA1D(2)设点E到面ACD1的距离为h,在ACD1中,AC=CD1=,AD1=,故(3)过D作DHCE于H,连D1H、DE,则D1HCE,DHD1为二面角D1ECD的平面角.设AE=x,则BE=2x解法(二):以D为坐标原点,直线DA,DC,DD1分别为x,y,z轴,建立空间直角坐标系,设AE=x,则A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0)(1)即DA1D1E.(2)因为E为AB的中点,则.,所以点E到平面AD1C的距离为(3)设平面D1EC的法向量,由令b=1,c=2,a=2x,依题意(不合,舍去),AE=时,二面角D1ECD的大小为.13(I)证明:EF分别为正方形ABCD得边AB、CD的中点,EB/FD,且EB=FD,四边形EBFD为平行四边形.BF/ED平面.(II)解法1:如右图,点A在平面BCDE内的射影G在直线EF上,过点A作AG垂直于平面BCDE,垂足为G,连结GC,GD.ACD为正三角形,AC=ADCG=GDG在CD的垂直平分线上,点A在平面BCDE内的射影G在直线EF上,过G作GH垂直于ED于H,连结AH,则,所以为二面角A-DE-C的平面角.即设原正方体的边长为2a,连结AF在折后图的AEF中,AF=,EF=2AE=2a,即AEF为直角三角形,在RtADE中,.解法2:点A在平面BCDE内的射影G在直线EF上连结AF,在平面AEF内过点作,垂足为.ACD为正三角形,F为CD的中点,又因,所以又且为A在平面BCDE内的射影G.即点A在平面BCDE内的射影在直线EF上过G作GH垂直于ED于H,连结AH,则,所以为二面角A-DE-C的平面角.即设原正方体的边长为2a,连结AF在折后图的AEF中,AF=,EF=2AE=2a,即AEF为直角三角形,在RtADE中,.解法3:点A在平面BCDE内的射影G在直线EF上连结AF,在平面AEF内过点作,垂足为.ACD为正三角形,F为CD的中点,又因,所以又为A在平面BCDE内的射影G.即点A在平面BCDE内的射影在直线EF上过G作GH垂直于ED于H,连结AH,则,所以为二面角A-DE-C的平面角.即设原正方体的边长为2a,连结AF在折后图的AEF中,AF=,EF=2AE=2a,即AEF为直角三角形,在RtADE中,.【点评】本小题考查空间中的线面关系,解三角形等基础知识考查空间想象能力和思维能力.14ABCDEA1B1C1OF()设O为AC中点,连接EO,BO,则EOC1C,又C1CB1B,所以EODB,EOBD为平行四边形,EDOB 2分ABBC,BOAC,又平面ABC平面ACC1A1,BO面ABC,故BO平面ACC1A1,ED平面ACC1A1,BDAC1,EDCC1,EDBB1,ED为异面直线AC1与BB1的公垂线6分()连接A1E,由AA1ACAB可知,A1ACC1为正方形,A1EAC1,又由ED平面ACC1A1和ED平面ADC1知平面ADC1平面A1ACC1,A1E平面ADC1作EFAD,垂足为F,连接A1F,则A1FAD,A1FE为二面角A1ADC1的平面角不妨设AA12,则AC2,ABEDOB1,EF,tanA1FE,A1FE60所以二面角A1ADC1为60 12分解法二:()如图,建立直角坐标系Oxyz,其中原点O为AC的中点设A(a,0,0),B(0,b,0),B1(0,b,2c)则C(a,0,0),C1(a,0,2c),E(0,0,c),D(0,b,c) 3分ABCDEA1B1C1Ozxy(0,b,0),(0,0,2c)0,EDBB1又(2a,0,2c),0,EDAC1, 6分所以ED是异面直线BB1与AC1的公垂线()不妨设A(1,0,0),则B(0,1,0),C(1,0,0),A1(1,0,2),(1,1,0),(1,1,0),(0,0,2),0,0,即BCAB,BCAA1,又ABAA1A,BC平面A1AD又E(0,0,1),D(0,1,1),C(1,0,1),(1,0,1),(1,0,1),(0,1,0),0,0,即ECAE,ECED,又AEEDE,EC面C1AD10分cos,即得和的夹角为60所以二面角A1ADC1为60 12分15)解法一:() 又AN为AC在平面ABN内的射影()又已知,因此为正三角形.,因此N在平面ABC内的射影H是正三角形ABC的中心,连结BH,为NB与平面ABC所成的角.在中,解法二:如图,建立空间直角坐标系.令,则有A(-1,0,0),B(1,0,0),N(0,1,0)。()是、的公垂线,故可设C(0,1,m).于是,。()又已知为正三角形,。在中,可得,故C(0,1,)连结MC,做于H,设,可得,连结BH,则,,又又16解法1:()证明:平面平面,又平面平面,平面平面,平面,又,.为与的公垂线.()解法1:过A作于D, 为正三角形,D为的中点.BC平面,又,AD平面,线段AD的长即为点A到平面的距离.在正中,.点A到平面的距离为.解法2:取AC中点O连结,则平面,且=.由()知,设A到平面的距离为x,即,解得.即A到平面的距离为.则所以,到平面的距离为.(III)过点作于,连,由三重线定理知是二面角的平面角。在中,。所以,二面角的大小为arctan.解法二:取中点连,易知底面,过作直线交。取为空间直角坐标系的原点,所在直线分别为轴,轴,轴建立如图所示的空间直角坐标系。则。(I),。 又由已知。,而。又显然相交,是的公垂线。(II)设平面的一个法向量, 又 由取 得 点到平面的距离,即在平面的法向量上的投影的绝对值。,设所求距离为。则所以,A到平面VBC的距离为.(III)设平面的一个法向量 由 取 二面角为锐角,所以,二面角的大小为17解法一:平面, 又,由平面几何知识得:()过做交于于,连结,则或其补角为异面直线与所成的角,四边形是等腰梯形,又四边形是平行四边形。是的中点,且又,为直角三角形,在中,由余弦定理得故异面直线PD与所成的角的余弦值为()连结,由()及三垂线定理知,为二面角的平面角,二面角的大小为()连结,平面平面,又在中,故时,平面解法二: 平面 又,由平面几何知识得:以为原点,分别为轴建立如图所示的空间直角坐标系,则各点坐标为,(), ,。故直线与所成的角的余弦值为()设平面的一个法向量为,由于,由 得 取,又已知平面ABCD的一个法向量,又二面角为锐角,所求二面角的大小为()设,由于三点共线,平面,由(1)(2)知:,。故时,平面。18解法一: ()如图, 连接A1B,AB1, , =l ,AA1l, BB1l, AA1, BB1. 则BAB1,ABA1分别是AB与和所成的角.RtBB1A中, BB1= , AB=2, sinBAB1 = = . BAB1=45.RtAA1B中, AA1=1,AB=2, sinABA1= = , ABA1= 30.故AB与平面,所成的角分别是45,30.() BB1, 平面ABB1.在平面内过A1作A1EAB1交AB1于E,则A1E平面AB1B.过E作EFAB交AB于F,连接A1F,则由三垂线定理得A1FAB, A1FE就是所求二面角的平面角.在RtABB1中,BAB1=45,AB1=B1B=. RtAA1B中,A1B= = . 由AA1A1B=A1FAB得 A1F= = ,在RtA1EF中,sinA1FE = = , 二面角A1ABB1的大小为arcsin.解法二: ()同解法一.() 如图,建立坐标系, 则A1(0,0,0),A(0,0,1),B1(0,1,0),B(,1,0).在AB上取一点F(x,y,z),则存在tR,使得=t , 即(x,y,z1)=t(,1,1), 点F的坐标为(t, t,1t).要使,须=0, 即(t, t,1t) (,1,1)=0, 2t+t(1t)=0,解得t= , 点F的坐标为(, ), =(, ). 设E为AB1的中点,则点E的坐标为(0, ). =(,).又=(,)(,1,1)= =0, , A1FE为所求二面角的平面角.又cosA1FE= = = = = ,二面角A1ABB1的大小为arccos.19解法一:()证明:取的中点,连结分别为的中点面,面面面面()设为的中点为的中点面作,交于,连结,则由三垂线定理得从而为二面角的平面角。在中,从而在中,故:二面角的大小为()作,交于,由面得面在中,方法二:以为原点,所在直线分别为轴,轴,轴,建立直角坐标系,则分别是的中点()取,显然面,又面面()过作,交于,取的中点,则设,则又由,及在直线上,可得:解得即与所夹的角等于二面角的大小故:二面角的大小为()设为平面的法向量,则又即可取点到平面的距离为,20(上海卷19)在直三棱柱中,.(1)求异面直线与所成的角的大小;(2)若与平面S所成角为,求三棱锥的体积。解:(1)BCB1C1,ACB为异面直线B1C1与AC所成角(或它的补角)ABC=90,AB=BC=1,ACB=45,异面直线B1C1与AC所成角为45.(2)AA1平面ABC,ACA1是A1C与平面ABC所成的角,ACA=45.ABC=90,AB=BC=1,AC=,AA1=.三棱锥A1-ABC的体积V=SABCAA1=.21()证明:取CD中点M,连结OM.在矩形ABCD中。,又,则,连结EM,于是四边形EFOM为平行四边形.又平面CDE,切EM平面CDE,FO平面CDE()证明:连结FM,由()和已知条件,在等边CDE中,且.因此平行四边形EFOM为菱形,从而EOFM而FMCD=M,CD平面EOM,从而CDEO.而,所以EO平面CDF.22解:方法一:(I)因为是的中点,所以.因为平面,所以,从而平面.因为平面,所以.(II)取的中点,连结、,则,所以与平面所成的角和与平面所成的角相等.因为平面,所以是与平面所成的角.在中,.故与平面所成的角是.方法二:如图,以为坐标原点建立空间直角坐标系,设,则.(I) 因为,所以(II) 因为,所以,又因为,所以平面因此的余角即是与平面所成的角.因为,所以与平面所成的角为.23解:方法一: ()因为N是PB的中点,PA=AB, 所以ANPB. 因为AD面PAB, 所以ADPB. 从而PB平面ADMN. 所以PBDM.()连结DN, 因为PB平面ADMN,所以BDN是BD与平面ADMN所成的角. 在中, 故BD与平面ADMN所成的角是.方法二: 如图,以A为坐标原点建立空间直角坐标系,设BC=1,则 ()因为 所以PBDM . ()因为 所以PBAD. 又PBDM. 因此的余角即是BD与平面ADMN. 所成的角. 因为 所以= 因此BD与平面ADMN所成的角为. 24解法一:()证:由已知DFAB且DAD为直角,故ABFD是矩形,从而CDBF.又PA底面ABCD,CDAD,故

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论