11-12 学年 高中数学 1-2-1应用举例正、余弦定理在实际中的应用精品课件同步导学 新人教A版必修5.ppt_第1页
11-12 学年 高中数学 1-2-1应用举例正、余弦定理在实际中的应用精品课件同步导学 新人教A版必修5.ppt_第2页
11-12 学年 高中数学 1-2-1应用举例正、余弦定理在实际中的应用精品课件同步导学 新人教A版必修5.ppt_第3页
11-12 学年 高中数学 1-2-1应用举例正、余弦定理在实际中的应用精品课件同步导学 新人教A版必修5.ppt_第4页
11-12 学年 高中数学 1-2-1应用举例正、余弦定理在实际中的应用精品课件同步导学 新人教A版必修5.ppt_第5页
免费预览已结束,剩余38页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1熟练掌握正、余弦定理2能够运用正、余弦定理等知识和方法求解距离、角度、高度等问题.,1应用正、余弦定理解与三角形有关的问题在高考中有所加强2以解答题形式考查测量问题.,1正弦定理指出了三角形中三条边与对应角的正弦之间的一个关系式,这个关系式是2余弦定理的公式是,.3在ABC中,若a2b2c2,则角C是;若a2b2c2,则角C是;若a2b2c2,则角C是,a2b2c22bccosA,b2a2c22accos_B,c2a2b22abcos_C,锐角,钝角,直角,1基线(1)定义:在测量上,根据需要适当确定的线段叫做基线(2)性质:在测量过程中,要根据实际需要选取合适的,使测量具有较高的一般来说,基线越长,测量的精确度越,测量,精确度,基线,长度,高,2对实际应用问题中的一些名称、术语的含义的理解(1)坡角:坡向与水平方向的夹角,如图,(2)仰角和俯角:在视线和水平线所成角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角,如图,(3)方位角:指从正北方向顺时针转到目标方向线所成的角,如图中B点的方位角为.,(4)方向角:从指定方向线到目标方向线所成的小于90的水平角,如南偏西60,指以正南方向为始边,顺时针方向向西旋转60.如图中ABC为北偏东60或为东偏北30.3正弦定理、余弦定理在实际测量中应用很广,主要学习它们在测量、等问题中的一些应用,距离,高度,角度,1如下图所示,已知两座灯塔A和B与海洋观察站C的距离都等于akm,灯塔A在观察站C的北偏东20,灯塔B在观察站C的南偏东40,则灯塔A与灯塔B的距离为(),答案:B,答案:D,3如图所示,为了测量河的宽度,在一侧岸边选定两点A,B,在另一侧岸边选定点C,测得CAB30,CBA75,AB120m,则河的宽度为_答案:60m,4如图,在海岸A处发现北偏东45方向,距A处(1)海里的B处有一艘走私船在A处北偏西75方向,距A处2海里的C处的我方缉私船,奉命以10海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度从B处向北偏东30方向逃窜,问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间,一商船行至索马里海域时,遭到海盗的追击,随即发出求救信号正在该海域执行护航任务的海军“黄山”舰在A处获悉后,即测出该商船在方位角为45距离10海里的C处,并沿方位角为105的方向,以9海里/时的速度航行“黄山”舰立即以21海里/时的速度前去营救求“黄山”舰靠近商船所需要的最少时间及所经过的路程,解题过程如图所示,若“黄山”舰以最少时间在B处追上商船,则A,B,C构成一个三角形设所需时间为t小时,则AB21t,BC9t.又已知AC10,依题意知,ACB120,根据余弦定理,AB2AC2BC22ACBCcosACB.(21t)2102(9t)22109tcos120,(21t)210081t290t,即360t290t1000.,题后感悟(1)将追及问题转化为三角形问题,即可把实际问题转化为数学问题这样借助于正弦定理或余弦定理,就容易解决问题了最后要把数学问题还原到实际问题中去(2)测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知两个角和一条边解三角形的问题,从而运用正弦定理去解决(3)测量两个不可到达的点之间的距离问题,一般是把求距离问题转化为应用余弦定理求三角形的边长的问题然后把求未知的另外边长问题转化为只有一点不能到达的两点距离测量问题,然后运用正弦定理解决,如图所示,A、B是水平面上的两个点,相距800m,在A点测得山顶C的仰角为45,BAD120,又在B点测得ABD45,其中D点是点C到水平面的垂足,求山高CD.,题后感悟解决测量高度问题的一般步骤是:在解题中,要综合运用立体几何知识与平面几何知识,注意方程思想的运用,2在某一山顶观测山下两村庄A、B,测得A的俯角为30,B的俯角为40,观测A、B两村庄的视角为50,已知A、B在同一海平面上且相距1000米,求山的高度(精确到1米,sin400.643),画出示意图,在三角形中利用正、余弦定理求有关角度进而解决问题,题后感悟在充分理解题意的基础上画出大致图形,由问题中的有关量提炼出三角形中的元素用余弦定理、勾股定理解三角形,(2)解三角形应用题的步骤准确理解题意,分清已知与所求,尤其要理解应用题中的有关名词和术语;画出示意图,并将已知条件在图形中标出;分析与所研究的问题有关的一个或几个三角形,通过合理运用正弦定理和余弦定理正确求解,并作答特别提醒在解题时要注意公式的选择,使解题过程尽可能简化,尽量避免讨论,某观测站C在城A的南偏西20的方向,由城A出发的一条公路,走向是南偏东40,在C处测得公路上B处有一人,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论