




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
24.1.4圆周角,特征:,角的顶点在圆上.,角的两边都与圆相交.,1、圆周角定义:顶点在圆上,并且两边都和圆相交的角叫圆周角.如;ABC,一、旧知回放:,A,B,C,活动一、创设情景,发现问题,2、圆心角与所对的弧的关系,3、圆周角与所对的弧的关系,4、同弧所对的圆心角与圆周角的关系,圆心角的度数等于它所对的弧的度数,圆周角的度数等于它所对的弧的度数的一半,定理:在同一圆内,同弧或等弧所对的圆周角相等,等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等。,圆周角定理,圆周角定理在同圆或等圆中一条弧所对的圆周角等于它所对的圆心角的一半.,老师提示:圆周角定理是承上启下的知识点,要予以重视.,即ABC=AOC.,问题1:半圆(或直径)所对的圆周角是多少度?,半圆(或直径)所对的圆周角是直角,活动二、诱导尝试,探索新知,用于判断某个圆周角是否是直角,问题2:90的圆周角所对的弦是什么?,90的圆周角所对的弦是圆的直径,用于判断某条线是否过圆心,A,B,D,C,如图:四边形ABCD中,A与C,B与D有何关系?,请同学们阅读第85页,了解圆内接四边形的概念,圆内接四边形的两组对角分别有怎样的关系?,O,如果一个多边形的所有定点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆角做这个多边形的外接圆。,圆内接四边形的对角互补,例1如图,O直径AB为10cm,弦AC为6cm,ACB的平分线交O于D,求BC、AD、BD的长,又在RtABD中,AD2+BD2=AB2,,解:AB是直径,,ACB=ADB=90,在RtABC中,,CD平分ACB,,AD=BD.,活动三、巩固新知,应用新知,例2已知:如图,在ABC中,AB=AC,以AB为直径的圆交BC于D,交AC于E,求证:,证明:连接AD。,AB是圆的直径,点D在圆上,,ADBC,ADB=90,,AB=AC,AD平分顶角BAC,即BAD=CAD,例3求证:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形(提示:作出以这条边为直径的圆.),A,B,C,O,求证:ABC为直角三角形.,证明:,CO=AB,以AB为直径作O,,AO=BO,,AO=BO=CO.,点C在O上.,又AB为直径,ACB=180=90.,ABC为直角三角形.,例4、如图,AD是ABC的高,AE是ABC的外接圆直径。求证:ABAC=AEAD,A,O,B,C,D,E,分析:要证ABAC=AEAD,ADCABE,或ACEADB,题后思:1、证明题的思路寻找方法;2、等积式的证明方法;3、辅助线的思考方法。,1.AB、AC为O的两条弦,延长CA到D,使AD=AB,如果ADB=35,求BOC的度数。,BOC=140,A=21,练习,4、在O中,一条弧所对的圆心角和圆周角分别为(2x+100)和(5x-30),则x=_;,3.如图,在直径为AB的半圆中,O为圆心,C、D为半圆上的两点,COD=50,则CAD=_;,20,25,5、如图:0A、OB、OC都是O的半径,AOB=2BOC。求证:ACB=2BAC。,6.如图,圆心角AOB=100,则ACB=_。,7.如图,你能设法确定一个圆形纸片的圆心吗?你有多少种方法?与同学交流一下,D,O,O,O,方法一,方法二,方法三,方法四,A,B,圆周角定理及其推论的用途你知道吗?,活动四、全课小结,内化新知,轻轻松松谈收获,本节课我们学习了哪些知识?,活动五推荐作业,延展新知,1、必做题教材第88页习题24.1第5题。教材第89页习题24.1第13、14题。,2、选做题在足球比赛场上,甲、乙两名队员互相配合向对方球门MN进攻
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年事业单位工勤技能-广西-广西汽车驾驶与维修员二级(技师)历年参考题库含答案解析
- 2025年事业单位工勤技能-广西-广西地质勘查员三级(高级工)历年参考题库含答案解析
- 2025年事业单位工勤技能-广东-广东信号工-机车信号设备维修二级(技师)历年参考题库典型考点含答案解析
- 烹饪甜品基础知识培训班课件
- 2025年事业单位工勤技能-安徽-安徽堤灌维护工一级(高级技师)历年参考题库典型考点含答案解析
- 烹饪原料储存
- 烷烃的命名教学课件
- 2025年驾驶证考试-摩托车理论考试-摩托车驾驶证(科目一)历年参考题库典型考点含答案解析
- 热镀锌基本知识培训课件
- 热轧槽钢基础知识培训
- 开票税点自动计算器
- 中华护理学会成人肠内营养支持护理团标解读
- 《两办意见》(关于进一步加强矿山安全生产工作的意见)培训课件2024
- 云南省康旅集团笔试题目
- 维稳工作培训课件
- 商城搭建方案
- 胰腺炎(修订版)
- 苏州团餐行业分析
- 食管癌化疗病人护理查房课件
- 第三章:堤防工程加固施工
- 胰岛素抵抗介绍演示培训课件
评论
0/150
提交评论