




已阅读5页,还剩29页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.3函数的基本性质单调性,仁怀市年生产总值统计表,生产总值(亿元),年份,600,400,200,人数(人),某市日平均出生人数统计表,年份,x,y,1,2,y,x,O,yx1,1,-1,O,O,y,x,y2x2,如何用x与f(x)来描述上升的图象?,O,x,y,如何用x与f(x)来描述上升的图象?,O,x,y,yf(x),x1x2,如何用x与f(x)来描述上升的图象?,O,x,y,yf(x),x1x2,f(x1)f(x2),如何用x与f(x)来描述上升的图象?,在给定区间上任取x1,x2,O,x,x1x2f(x1)f(x2),如何用x与f(x)来描述上升的图象?,在给定区间上任取x1,x2,O,x,x1x2f(x1)f(x2),如何用x与f(x)来描述上升的图象?,在给定区间上任取x1,x2,函数f(x)在给定区间上为增函数.,O,x,x1x2f(x1)f(x2),如何用x与f(x)来描述上升的图象?,在给定区间上任取x1,x2,如何用x与f(x)来描述下降的图象?,x2,x1,O,x,y,yf(x),f(x1),f(x2),函数f(x)在给定区间上为增函数.,O,x,x1x2f(x1)f(x2),在给定区间上任取x1,x2,如何用x与f(x)来描述下降的图象?,x2,x1,O,x,y,yf(x),f(x1),f(x2),函数f(x)在给定区间上为增函数.,O,x,函数f(x)在给定区间上为减函数.,x1x2f(x1)f(x2),在给定区间上任取x1,x2,增函数、减函数的概念:,增函数、减函数的概念:,一般地,设函数f(x)的定义域为I.,1.如果对于定义域I内的某个区间上的任意两个自变量的值x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在这个区间上是增函数.,增函数、减函数的概念:,一般地,设函数f(x)的定义域为I.,1.如果对于定义域I内的某个区间上的任意两个自变量的值x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在这个区间上是增函数.2.如果对于定义域I内的某个区间上的任意两个自变量的值x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在这个区间上是减函数.,增函数、减函数的概念:,一般地,设函数f(x)的定义域为I.,1.如果对于定义域I内的某个区间上的任意两个自变量的值x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在这个区间上是增函数.2.如果对于定义域I内的某个区间上的任意两个自变量的值x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在这个区间上是减函数.,一般地,设函数f(x)的定义域为I.,增函数、减函数的概念:,1.如果对于定义域I内的某个区间上的任意两个自变量的值x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在这个区间上是增函数.2.如果对于定义域I内的某个区间上的任意两个自变量的值x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在这个区间上是减函数.,一般地,设函数f(x)的定义域为I.,增函数、减函数的概念:,1.如果对于定义域I内的某个区间上的任意两个自变量的值x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在这个区间上是增函数.2.如果对于定义域I内的某个区间上的任意两个自变量的值x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在这个区间上是减函数.,增函数、减函数的概念:,一般地,设函数f(x)的定义域为I.,1.如果对于定义域I内的某个区间上的任意两个自变量的值x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在这个区间上是增函数.2.如果对于定义域I内的某个区间上的任意两个自变量的值x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在这个区间上是减函数.,增函数、减函数的概念:,一般地,设函数f(x)的定义域为I.,1.如果对于定义域I内的某个区间上的任意两个自变量的值x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在这个区间上是增函数.2.如果对于定义域I内的某个区间上的任意两个自变量的值x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在这个区间上是减函数.,增函数、减函数的概念:,一般地,设函数f(x)的定义域为I.,1.如果对于定义域I内的某个区间上的任意两个自变量的值x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在这个区间上是增函数.2.如果对于定义域I内的某个区间上的任意两个自变量的值x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在这个区间上是减函数.,一般地,设函数f(x)的定义域为I.,增函数、减函数的概念:,函数单调性的概念:,函数单调性的概念:,函数单调性的概念:,-2,3,2,1,-1,y,-3,-4,4,O,x,2,-2,3,1,-3,-1,5,-5,函数yf(x)的单调区间有5,2),2,1),1,3),3,5,,其中yf(x)在5,2),1,3)上是减函数,在区间2,1),3,5上是增函数,解:,例1右图是定义在闭区间5,5上的函数yf(x)的图象,根据图象说出yf(x)的单调区间,以及在每一单调区间上,yf(x)是增函数还是减函数,变式1:求yx24x5的单调区间.,定义法证明,例2证明:函数f(x)3x2在R上是增函数,判定函数在某个区间上的单调性的方法步骤:,3.判断上述差的符号;,4.下结论,1.设x1,x2给定的区间,且x1x2;,2.计算f(x1)f(x2)至最简;,(若差0,则为增函数;若差0,则为减函数).,变式1:函数f(x)3x2在R上是增函数还是减函数?,变式2:f(x)在(,0)上是增函数还是减
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 麻雀作文范文习作说课课件
- 二零二五年度深圳市光明区离婚财产分割协议书
- 2025版化粪池清污及环境监测服务合同
- 二零二五年度二手车买卖及二手车保险代理协议
- 2025版线上线下导购联合营销合同
- 二零二五版建筑材料堆场租赁与绿化维护合同
- 二零二五年教育培训机构贷款担保服务协议
- 2025版车辆挂靠经营与新能源电池回收服务合同
- 二零二五年度新型二手集装箱全球贸易买卖合同
- 2025版绿色出行单车租赁合作协议书
- 2025年教师招聘教育学心理学试题及答案汇编
- 2025年中国石油套管行业市场全景评估及发展战略规划报告
- 2025年小学英语(2022版)新课程标准考试测试卷及答案(共四套)
- 城市环卫车辆维护保养计划
- 2025届江苏省无锡市锡山区锡东片英语七年级第二学期期末检测试题含答案
- 林业发展“十五五”和中长期规划基本思路(全国)
- 党课课件含讲稿:《关于加强党的作风建设论述摘编》辅导报告
- GB/T 19023-2025质量管理体系成文信息指南
- 商业地产招商管理制度
- 光伏电站运维安全协议书
- T/CHTS 10061-2022雄安新区高速公路房建工程装配式近零能耗建筑技术标准
评论
0/150
提交评论