




已阅读5页,还剩91页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三章统计资料整理,教学目的与要求:本章阐述统计整理的理论与方法,包括统计分组、汇总和统计表的设计。学习本章的要求:1.了解对原始资料进行加工的基本方法。2.掌握分组方法和汇总技术。3.掌握次数分布表的编制。4.学会统计表的编制和统计图的绘制,并能熟练运用。,第一节统计整理的基本问题,一、统计整理的概念和作用1、定义:根据统计研究的目的要求,对统计调查所得的各项资料进行科学的分组和汇总的工作过程。2、意义:是对现象的认识从感性认识到理性认识的开始,在统计研究工作中发挥着承前启后的作用。,二、统计整理的基本步骤,1、制定统计整理方案2、原始资料的审核、筛选与排序3、进行统计分组和统计汇总4、编制统计图表,三、数据的预处理,(1)资料的完整性和及时性调查单位或填报单位是否齐全,规定项目是否有不报、漏报、缺报现象,应报资料的份数是否符合规定等。(2)资料的正确性检查所填报资料是否准确可靠。方法有:逻辑检查;计算检查,1、数据的审核,审核数据准确性的方法逻辑检查从定性角度,审核数据是否符合逻辑,内容是否合理,各项目或数字之间有无相互矛盾的现象计算检查检查调查表中的各项数据在计算结果和计算方法上有无错误,(3)二手数据的审核审核适用性和时效性2、数据筛选(1)将某些不符合要求的数据或有明显错误的数据予以剔除(2)将符合某种特定条件的数据筛选出来,而不符合特定件的数据予以剔出3、数据排序,第二节质量数据的整理与展示,一、定类数据的整理与显示(一)频数和频数分布频数(次数):落在某一特定类别中的数据个数频数分布(次数分布):把各个类别及其相应的频数全部列出来频率(比重):某一类别数据占全部数据的比值(二)定类数据的图示,例:,2、饼形图:,是用圆形及圆内扇形的面积来表示数值大小的图形。主要用于表示总体中各组成部分所占的比例,对于研究结构性问题十分有用。方法:在绘制圆形图时,总体中各部分所占的百分比用圆内的各个扇形面积表示,这些扇形的中心角度,是按各部分百分比占3600的相应比例确定的。,例题,为研究广告市场的状况,一家广告公司在某城市随机抽取200人就广告问题做了邮寄问卷调查,其中的一个问题是“您比较关心下列哪一类广告?”1商品广告;2服务广告;3金融广告;4房地产广告;5招生招聘广告;6其他广告。,例如,关注服务广告的人数占总人数的百分比为25.5%,那么其扇形的中心角度就应为360025.5%91.80,其余类推,15%,6%,9%,8%,33%,29%,饮食,教育,娱乐,旅游,交通,服装,饼形图,某城市居民消费支出构成图,二、定序数据的整理与显示,除了可用定类数据的整理和显示方法外,还可以计算累计频数和累计频率。1、累计频数和累计频率将各类别的次数和频率逐组连续相加而得到的累计数。种类:以下累计(向上累计):由低高逐组累计以上累计(向下累计):由高低逐组累计,例题在一项城市住房问题的研究中,研究人员在甲乙两个城市各抽样调查300户,其中的一个问题是:“您对您家庭目前的住房状况是否满意?1非常不满意;2不满意;3一般;4满意;5非常满意。,50名学生成绩次数分布表,2、顺序数据的显示,(1)环形图(2)累计分布图,甲城市家庭对住房状况评价的累积频数分布,第三节数值数据的整理与展示,一、统计分组的概念根据社会经济现象的特点和统计研究的目的要求,按照某种重要标志把总体分成若干部分的科学分类。两方面含义:(1)对总体而言:是“分”,即将总体分为若干性质相异的部分(2)对总体单位而言:是“合”,即将性质相同的个体组合起来组内同质性,组间差异性,二、统计分组的作用,1、划分现象的不同类型2、研究现象的内部结构3、分析现象之间的依存关系三、统计分组的种类1、按分组标志个数不同(1)简单分组:把总体只按一个标志分组。(2)复合分组对同一总体选择两个或两个以上标志层叠起来进行分组。例如:同时选择学科、学制、性别三个标志对某学院全体在校学生这个总体进行分组。(3)并列分组,例:对学生的分类按学科、学制、性别分组,文科,本科专科,男生女生,男生女生,男生女生,男生女生,本科专科,理科,学生,例:对工业企业的分类按轻重工业、企业规模、盈亏状况分组,重工业,大型中型小型,盈利亏损,盈利亏损,盈利亏损,盈利亏损,盈利亏损,盈利亏损,大型中型小型,轻工业,工业企业,2、按分组标志性质不同,(1)品质分组(2)数量分组A、单项式分组:一个变量值表示一个组的分组。适用于离散型变量且变量的取值不多。例如:职工家庭人口数,其取值不可能很多,且每一个取值都可视为一种类型。,按家庭人口数分组1人2人3人4人5人6人,B、组距式分组,凡是用一定范围内的两个变量值表示一个组的分组。要点:将变量值的一个区间作为一组适合于连续变量也适合于虽为离散型变量但变量值较多的情况必须遵循“不重不漏”的原则可采用等距分组,也可采用不等距分组,组距式分组举例:,1)连续型变量的组距式分组如对商店按销售额进行分组:,按销售额分组(万元)50以下50200200400400600600800800以上,2)离散型变量的组距式分组,如对某企业的20生产小组按人数分组:,生产小组按人数分组(人)110112021303140,注意:离散变量相邻两组的上下限既可以间断,也可以重叠;连续变量相邻两组的上下限只能重叠。,四、分组标志的选择,1、要符合统计研究的目的和要求2、必须选择最重要的标志作为分组依据例如,要研究各地区的经济发展水平时,可供选择的分组标志有国内生产总值、国民收入、社会总产值、人均国内生产总值等研究企业经济效益好坏,可供选择的分组标志有工业总产值、利润总额、净产值、利税总额、人均利税额等3、要考虑到社会经济现象所处的具体历史条件,穷尽原则(总体中的每一个单位都有组可归)互斥原则(总体中任何一个单位只能归属于某一组),五、统计分组的原则与方法,(一)原则,(二)品质分组的方法,品质分组比较简单,分组标志一经确定,组的名称和组数也随之确定。如人口按性别分组、企业按所有制分组等,组数由研究对象的特点和统计研究的任务决定。,组数:即将总体分为几组。组数的确定:(1)全距(总体最大最小值差额)(2)组距(各组最大值(上限)-最小值(下限)。组数=全距/组距组数的确定无统一固定原则,可参考美国学者斯特杰斯(Sturges)的经验公式:n=1+3.3lgN,d=R/n(n组数,N总体单位数,d组距,R全距),1、组数与组距,(三)数量分组的方法,2、组限,组限:指每组两端数值。分上限和下限上限:每组的终点数值(最大值)下限:每组的起点数值(最小值)组限的形式:组限重合式:相邻两组,前一组上限等于下一组下限组限不重合:相邻两组,前一组上限不等于下一组下限,但紧密相连组距:本组上限-本组下限,3、组中值,组中值:各组上下限之间的中点值,本组变量的一般水平或代表值。计算公式:组中值=(上限下限)2(重合式组限)组中值=(本组下限+下组下限)2(不重合式组限),开口组,开口组:形如“以上”、“以下”的组。计算公式:缺下限开口组组中值=上限-邻组组距/2缺上限开口组组中值=下限+邻组组距/2例:,1、统计汇总:在统计分组的基础上,将总体中的所有单位按组归类整理。遵循“上限不在内”原则2、次数分布数列指反映总体单位在各组的分布状况的一系列数字。它是在统计分组的基础上将总体的所有单位按组归类,并把所有的组及其单位数按一定顺序排列而成。基本要素:各组的名称(各组变量值)“x”各组单位数(次数)“f”,六、统计汇总和分布数列,(2)按分组形式不同分:,单项式数列:每组只有一具体变量值组距式数列:用组距代表一个组(分等距数列和不等距数列),次数分布数列的种类,(1)按分组标志不同分:品质数列和变量数列,(3)按次数分布特征分:,钟形分布:-特征是“两头小,中间大”,即靠近中间的变量值分布的次数多,靠近两边的变量分布次数少,形若古钟。分为:正态分布、左偏分布和右偏分布,形分布:-其特征与钟型分布正相反,靠近中间的变量值分布的次数少,靠近两端的变量值分布次数多,形成“两头大,中间小”的字型分布。J形分布:,七、变量分布数列的编制,(1)单项式分布数列(变动范围不大的离散型变量)要点:将一个变量值作为一组适合于离散变量适合于变量值较少的情况,1、简单次数分布数列的编制,适用于变动范围大且变量数值多的连续型变量或离散型变量要点:将变量值的一个区间作为一组必须遵循“不重不漏”的原则可采用等距分组,也可采用不等距分组,(2)组距式分布数列,步骤:按大小排列,计算出全距;确定组距和组数(组距一般选10或5的倍数);确定组限及表示方法;计算各组次数和频率。遵循“上限不在内”原则,举例:分布数列的编制,例如,某生产车间50名工人日加工零件数如下:117122124129139107117130122125108131125117122133126122118108110118123126133134127123118112112134127123119113120123127135137114120128124115139128124121,编制过程,首先,对上面的数据进行排序107108108110112112113114115117117117118118118119120120121122122122122123123123123124124124125125126126127127127128128129130131133133134134135137139139第二步,全距13910732,定组距=10确定组数组数=32103.2组数4第三步,确定组限,计算各组次数、频率及累计次数,50名工人日产零件数次数分布表,思考:某地区对其所属50家国有企业按生产计划完成程度进行分组,正确的应为:,第一种分组:90%以下第二种分组:100%以下90.1%-100%100%-110%100.1%-110%110%以上110.1%以上第三种分组:85%以下85%-95%95%-105%105%以上,2、累计次数分布数列,为了知道截止某一变量值以上或以下的分配次数是多少,则需要把次数进行累计相加。将变量数列各组的次数和频率逐组连续相加而得到的累计数进行排列(2)种类:以下累计(向上累计):由低高逐组累计表示该组上限以下的次数(频率)有多少以上累计(向下累计):由高低逐组累计表示该组下限以上的次数(频率)有多少,50名工人日产零件数次数分布表,某班学生考试成绩次数分布表,想一想:第四组的累计结果说明什么问题?,八、次数分布数列的表示(一)列表法,1、某高校学生性别分布表,2、某厂工人日产量分布表,3、某班学生按考试成绩分组,(二)图示法,1、直方图用直方形的宽度和高度来表示次数分布的图形。直方图的制作方法:在直角坐标中,用横轴表示数据分组,纵轴表示频数或频率,各组与相应的频数就形成了一个矩形,即直方图。有单式、复式等形式。,资料:50名工人日产零件数次数分布表,直方图的绘制,直方图的绘制,频数(人),15,12,9,6,3,日加工零件数(个),某车间工人日加工零件数的直方图,我一眼就看出来了,大多数人的日加工零件数在120125之间!,单式柱形图例:2005年我国旅客周转量(亿人公里),复式柱形图19982002年我国进出口总额(亿美元),2、折线图,折线图是在直方图的基础上,把直方图顶部的中点(组中值)用直线连接起来,再把原来的直方图抹掉折线图的两个终点要与横轴相交,具体的做法是:第一个矩形的顶部中点通过竖边中点(即该组频数一半的位置)连接到横轴,最后一个矩形顶部中点与其竖边中点连接到横轴,15,12,9,6,3,105,110,115,120,125,130,135,140,日加工零件数(个),频数(人),折线图的绘制,某车间工人日加工零件数的折线图,3、曲线图,对折线图的折线平滑化,得到曲线图,第四节统计资料的显示,一、统计表(一)统计表的概念和结构1、概念:集中而有序地表现统计资料的表格。作用:它清楚地、有条理地显示统计资料,直观地反映统计分布特征,便于计算、分析,是统计分析的一种重要工具。2、结构:外形结构:总标题、横行和纵栏标题、数字资料内容结构:主词、宾词,(二)统计表的结构我国2007年国内生产总值(总标题),横行标题,纵栏标题,数字资料,主词,宾词,(三)统计表的种类,1、按用途的不同分:(1)调查表(2)汇总表(3)分析表2、按主词的分组情况分:,(1)简单表例1:,我国三个城市的人口数(1990年7月1日零时),例2:,我国1998-2002年拥有电话户数(万户),(2)分组表例1:学生成绩分布表例2:某地区农户拥有电视机情况,(3)复合表某年末某地区人口资料,(四)宾词指标的设计,1、平行设计(1)对宾词不作任何分组,例:我国三个城市的人口数(1990年7月1日零时),(2)对宾词进行并列分组,例:某个企业车间人员情况统计表,2、叠列设计,将宾词按两个或两个以上标志进行复合分组,(五)编制统计表的原则,1、格式要规范,统一一般“上、下粗线,中间细线,两边开口”2、内容简明扼要,项目排列合理3、字迹清楚规范,数字整齐表中的数据一般是右对齐,有小数点时应以小数点对齐,而且小数点的位数应统一4、使用正确的计量单位5、对于没有数字的表格单元,一般用“”表示6、必要时可在表的下方加上注释,练习:设甲、乙两个企业某年末有关资料如下所示:,要求:设计一张主词按甲、乙企业分组,宾词作复合设计的统计表,表明甲、乙企业的职工数和不同工龄中男、女人数。,甲、乙企业职工人数及分布表单位:人,二、统计图,(一)含义通过几何图形或具体事物的形象和符号来表现统计资料的方式。(二)优点鲜明直观形象生动通俗易懂一目了然易读易记印象深刻(三)统计图的分类分为分布图和形象图两大类。,统计图的构成,1图题,图8,某国各地降水量,降水量(毫米),2图号,3图目,4图尺,5图形,6图注,图题,图号,图目,图尺,图形,图注,图目,1、饼形图:,是用圆形及圆内扇形的面积来表示数值大小的图形。主要用于表示总体中各组成部分所占的比例,对于研究结构性问题十分有用。方法:在绘制圆形图时,总体中各部分所占的百分比用圆内的各个扇形面积表示,这些扇形的中心角度,是按各部分百分比占3600的相应比例确定的。,例如,关注服务广告的人数占总人数的百分比为25.5%,那么其扇形的中心角度就应为360025.5%91.80,其余类推,15%,6%,9%,8%,33%,29%,饮食,教育,娱乐,旅游,交通,服装,饼形图,某城市居民消费支出构成图,例:,(1)曲线图:,是以线条的连续升降来表示现象动态及现象间的依存关系的统计图形。,3、线形图:,(2)折线图:,4、茎叶图,用于显示未分组的原始数据的分布由“茎”和“叶”两部分构成,其图形是由数字组成的以该组数据的高位数值作树茎,低位数字作树叶茎叶图类似于横置的直方图,但又有区别A、直方图可大体上看出一组数据的分布状况,但没有给出具体的数值B、茎叶图既能给出数据的分布状况,又能给出每一个原始数值,保留了原始数据的信息,举例:,资料:某班40名学生英语考试成绩如下:68898884868775737268758299588154797695767160916576727685899264578381787772617087要求:绘制茎叶图,树茎,树叶,478,014588,012223556666789,112345677899,数据个数,茎叶图的图示,学生成绩的茎叶图,9,1259,4,5、面积图:,1998年末深圳、香港、新加坡人口比较单位:万人,深圳、香港、新加坡人口比较单位:万人,课堂练习,一、判断题:,1、统计表的主词栏是说明总体各种统计指标的。()2、统计分组的关键问题是确定组距和组数。()3、组中值是根据各组上限和下限计算的平均值,所以它代表了每一组的平均分布次数。()4、分布数列的实质是把总体单位总量按照总体所分的组进行分配。()5、连续型变量和离散型变量在进行组距式分组时,均可采用相邻组组距重叠的方法确定组限。()
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汉字的来历课件
- 云南省昆明市2024-2025学年七年级下学期期中考试地理试卷(含答案)
- 广东省湛江市第一中学2024-2025学年第一学期第三次综合素质评价(期末)试卷(含解析)
- 工地协议书范文
- 工厂厂房转让合同(6篇)
- 2024-2025学年广东省广州市番禺区高二(下)期末物理试卷(含答案)
- 《诗经》与楚辞导读知到智慧树答案
- 成都二手房买卖合同(15篇)
- 房地产誓师大会发言稿
- 汉字书法课件模板图
- 建筑公司分包合同管理办法
- 2025至2030苏打水行业发展趋势分析与未来投资战略咨询研究报告
- 2025年秋季学期德育工作计划:向下扎根向上开花
- 2025-2030中国家政服务行业信用体系建设与服务质量监管报告
- 2025年安徽省普通高中学业水平选择性考试(物理)科目高考真题+(答案解析版)
- 2025年成都东部集团有限公司及下属企业招聘考试笔试试卷【附答案】
- 各分项工程质量保证措施
- 国税编制管理办法
- 特种畜禽管理办法
- 消防员心理健康教育课件教学
- 藏族课件模板
评论
0/150
提交评论