




免费预览已结束,剩余16页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
圆专项练习2015年12月02日一选择题(共10小题)1如图,O的直径AB垂直于弦CD,垂足为E,A=22.5,OC=4,CD的长为()A2 B4 C4 D82如图,在平面直角坐标系中,P的圆心坐标是(3,a)(a3),半径为3,函数y=x的图象被P截得的弦AB的长为,则a的值是()A4 B C D3已知O的直径CD=10cm,AB是O的弦,AB=8cm,且ABCD,垂足为M,则AC的长为()Acm Bcm Ccm或cmDcm或cm4如图,已知经过原点的P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则ACB=()A80 B90 C100 D无法确定5如图,O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A2 B4 C6 D86ABC为O的内接三角形,若AOC=160,则ABC的度数是()A80 B160 C100 D80或1007如图,ABC的顶点A、B、C均在O上,若ABC+AOC=90,则AOC的大小是() A30 B45 C60 D708如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是()A8AB10 B8AB10 C4AB5 D4AB59如图,AB是O的直径,CD是O的切线,切点为D,CD与AB的延长线交于点C,A=30,给出下面3个结论:AD=CD;BD=BC;AB=2BC,其中正确结论的个数是()A3 B2 C1 D010如图,已知A、B两点的坐标分别为(2,0)、(0,1),C 的圆心坐标为(0,1),半径为1若D是C上的一个动点,射线AD与y轴交于点E,则ABE面积的最大值是()A3BCD4二填空题(共8小题)11如图,AB、CD是半径为5的O的两条弦,AB=8,CD=6,MN是直径,ABMN于点E,CDMN于点F,P为EF上的任意一点,则PA+PC的最小值为12如图,以ABC的边BC为直径的O分别交AB、AC于点D、E,连结OD、OE,若A=65,则DOE=13如图,AB是O的直径,点C是O上的一点,若BC=6,AB=10,ODBC于点D,则OD的长为14如图,在RtAOB中,OA=OB=3,O的半径为1,点P是AB边上的动点,过点P作O的一条切线PQ(点Q为切点),则切线PQ的最小值为15如图,ABC内接于O,BAC=120,AB=AC,BD为O的直径,AD=6,则DC=16(2014青岛)如图,AB是O的直径,BD,CD分别是过O上点B,C的切线,且BDC=110连接AC,则A的度数是17如图,在平面直角坐标系xOy中,直线AB经过点A(4,0)、B(0,4),O的半径为1(O为坐标原点),点P在直线AB上,过点P作O的一条切线PQ,Q为切点,则切线长PQ的最小值为18如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,ODAC,垂足为E,交O于D,连接BE设BEC=,则sin的值为三解答题(共8小题)19(2014南通)如图,AB是O的直径,弦CDAB于点E,点M在O上,MD恰好经过圆心O,连接MB(1)若CD=16,BE=4,求O的直径;(2)若M=D,求D的度数20(2014无锡)如图,AB是半圆O的直径,C、D是半圆O上的两点,且ODBC,OD与AC交于点E(1)若B=70,求CAD的度数;(2)若AB=4,AC=3,求DE的长21(2014大庆)如图,AB是O的直径,弦CDAB于点E,点P在O上,PB与CD交于点F,PBC=C(1)求证:CBPD;(2)若PBC=22.5,O的半径R=2,求劣弧AC的长度22(2013兰州)已知,如图,直线MN交O于A,B两点,AC是直径,AD平分CAM交O于D,过D作DEMN于E(1)求证:DE是O的切线;(2)若DE=6cm,AE=3cm,求O的半径23(2014涪城区校级自主招生)已知:如图,在ABC中,AB=BC,D是AC中点,BE平分ABD交AC于点E,点O是AB上一点,O过B、E两点,交BD于点G,交AB于点F(1)求证:AC与O相切;(2)当BD=6,sinC=时,求O的半径24(2013桂林)如图,在ABC中,C=90,BAC的平分线AD交BC于D,过点D作DEAD交AB于E,以AE为直径作O(1)求证:点D在O上;(2)求证:BC是O的切线;(3)若AC=6,BC=8,求BDE的面积25(2015茂名模拟)如图,在平面直角坐标系中,以点M(0,)为圆心,以长为半径作M交x轴于A、B两点,交y轴于C、D两点,连接AM并延长交M于P点,连接PC交x轴于E(1)求点C、P的坐标;(2)求证:BE=2OE26(2014德州)如图,O的直径AB为10cm,弦BC为5cm,D、E分别是ACB的平分线与O,AB的交点,P为AB延长线上一点,且PC=PE(1)求AC、AD的长;(2)试判断直线PC与O的位置关系,并说明理由2015年12月02日圆专项练习参考答案与试题解析一选择题(共10小题)1(2015安顺)如图,O的直径AB垂直于弦CD,垂足为E,A=22.5,OC=4,CD的长为()A2B4C4D8【考点】垂径定理;等腰直角三角形;圆周角定理菁优网版权所有【分析】根据圆周角定理得BOC=2A=45,由于O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算【解答】解:A=22.5,BOC=2A=45,O的直径AB垂直于弦CD,CE=DE,OCE为等腰直角三角形,CE=OC=2,CD=2CE=4故选:C【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半也考查了等腰直角三角形的性质和垂径定理2(2014泸州)如图,在平面直角坐标系中,P的圆心坐标是(3,a)(a3),半径为3,函数y=x的图象被P截得的弦AB的长为,则a的值是()A4BCD【考点】垂径定理;一次函数图象上点的坐标特征;勾股定理菁优网版权所有【专题】计算题;压轴题【分析】PCx轴于C,交AB于D,作PEAB于E,连结PB,由于OC=3,PC=a,易得D点坐标为(3,3),则OCD为等腰直角三角形,PED也为等腰直角三角形由PEAB,根据垂径定理得AE=BE=AB=2,在RtPBE中,利用勾股定理可计算出PE=1,则PD=PE=,所以a=3+【解答】解:作PCx轴于C,交AB于D,作PEAB于E,连结PB,如图,P的圆心坐标是(3,a),OC=3,PC=a,把x=3代入y=x得y=3,D点坐标为(3,3),CD=3,OCD为等腰直角三角形,PED也为等腰直角三角形,PEAB,AE=BE=AB=4=2,在RtPBE中,PB=3,PE=,PD=PE=,a=3+故选:B【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧也考查了勾股定理和等腰直角三角形的性质3(2014凉山州)已知O的直径CD=10cm,AB是O的弦,AB=8cm,且ABCD,垂足为M,则AC的长为()AcmBcmCcm或cmDcm或cm【考点】垂径定理;勾股定理菁优网版权所有【专题】分类讨论【分析】先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论【解答】解:连接AC,AO,O的直径CD=10cm,ABCD,AB=8cm,AM=AB=8=4cm,OD=OC=5cm,当C点位置如图1所示时,OA=5cm,AM=4cm,CDAB,OM=3cm,CM=OC+OM=5+3=8cm,AC=4cm;当C点位置如图2所示时,同理可得OM=3cm,OC=5cm,MC=53=2cm,在RtAMC中,AC=2cm故选:C【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键4(2015兰州)如图,已知经过原点的P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则ACB=()A80B90C100D无法确定【考点】圆周角定理;坐标与图形性质菁优网版权所有【分析】由AOB与ACB是优弧AB所对的圆周角,根据圆周角定理,即可求得ACB=AOB=90【解答】解:AOB与ACB是优弧AB所对的圆周角,AOB=ACB,AOB=90,ACB=90故选B【点评】此题考查了圆周角定理此题比较简单,解题的关键是观察图形,得到AOB与ACB是优弧AB所对的圆周角5(2014舟山)如图,O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A2B4C6D8【考点】垂径定理;勾股定理菁优网版权所有【专题】计算题【分析】根据CE=2,DE=8,得出半径为5,在直角三角形OBE中,由勾股定理得BE,根据垂径定理得出AB的长【解答】解:CE=2,DE=8,OB=5,OE=3,ABCD,在OBE中,得BE=4,AB=2BE=8故选:D【点评】本题考查了勾股定理以及垂径定理,是基础知识要熟练掌握6(2015酒泉)ABC为O的内接三角形,若AOC=160,则ABC的度数是()A80B160C100D80或100【考点】圆周角定理菁优网版权所有【分析】首先根据题意画出图形,由圆周角定理即可求得答案ABC的度数,又由圆的内接四边形的性质,即可求得ABC的度数【解答】解:如图,AOC=160,ABC=AOC=160=80,ABC+ABC=180,ABC=180ABC=18080=100ABC的度数是:80或100故选D【点评】此题考查了圆周角定理与圆的内接四边形的性质此题难度不大,注意数形结合思想与分类讨论思想的应用,注意别漏解7(2014重庆)如图,ABC的顶点A、B、C均在O上,若ABC+AOC=90,则AOC的大小是()A30B45C60D70【考点】圆周角定理菁优网版权所有【专题】计算题【分析】先根据圆周角定理得到ABC=AOC,由于ABC+AOC=90,所以AOC+AOC=90,然后解方程即可【解答】解:ABC=AOC,而ABC+AOC=90,AOC+AOC=90,AOC=60故选:C【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半8(2015齐齐哈尔)如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是()A8AB10B8AB10C4AB5D4AB5【考点】直线与圆的位置关系;勾股定理;垂径定理菁优网版权所有【分析】此题可以首先计算出当AB与小圆相切的时候的弦长连接过切点的半径和大圆的一条半径,根据勾股定理和垂径定理,得AB=8若大圆的弦AB与小圆有公共点,即相切或相交,此时AB8;又因为大圆最长的弦是直径10,则8AB10【解答】解:当AB与小圆相切,大圆半径为5,小圆的半径为3,AB=2=8大圆的弦AB与小圆有公共点,即相切或相交,8AB10故选:A【点评】本题综合考查了切线的性质、勾股定理和垂径定理此题可以首先计算出和小圆相切时的弦长,再进一步分析有公共点时的弦长9(2014无锡)如图,AB是O的直径,CD是O的切线,切点为D,CD与AB的延长线交于点C,A=30,给出下面3个结论:AD=CD;BD=BC;AB=2BC,其中正确结论的个数是()A3B2C1D0【考点】切线的性质菁优网版权所有【专题】几何图形问题【分析】连接OD,CD是O的切线,可得CDOD,由A=30,可以得出ABD=60,ODB是等边三角形,C=BDC=30,再结合在直角三角形中300所对的直角边等于斜边的一半,继而得到结论成立【解答】解:如图,连接OD,CD是O的切线,CDOD,ODC=90,又A=30,ABD=60,OBD是等边三角形,DOB=ABD=60,AB=2OB=2OD=2BDC=BDC=30,BD=BC,成立;AB=2BC,成立;A=C,DA=DC,成立;综上所述,均成立,故答案选:A【点评】本题考查了圆的有关性质的综合应用,在本题中借用切线的性质,求得相应角的度数是解题的关键10(2015沂源县一模)如图,已知A、B两点的坐标分别为(2,0)、(0,1),C 的圆心坐标为(0,1),半径为1若D是C上的一个动点,射线AD与y轴交于点E,则ABE面积的最大值是()A3BCD4【考点】切线的性质;三角形的面积菁优网版权所有【专题】计算题;压轴题【分析】当射线AD与C相切时,ABE面积的最大设EF=x,由切割线定理表示出DE,可证明CDEAOE,根据相似三角形的性质可求得x,然后求得ABE面积【解答】解:当射线AD与C相切时,ABE面积的最大连接AC,AOC=ADC=90,AC=AC,OC=CD,RtAOCRtADC,AD=AO=2,连接CD,设EF=x,DE2=EFOE,CF=1,DE=,CDEAOE,=,即=,解得x=,SABE=故选:B【点评】本题是一个动点问题,考查了切线的性质和三角形面积的计算,解题的关键是确定当射线AD与C相切时,ABE面积的最大二填空题(共8小题)11(2014张家界)如图,AB、CD是半径为5的O的两条弦,AB=8,CD=6,MN是直径,ABMN于点E,CDMN于点F,P为EF上的任意一点,则PA+PC的最小值为【考点】垂径定理;轴对称的性质菁优网版权所有【分析】A、B两点关于MN对称,因而PA+PC=PB+PC,即当B、C、P在一条直线上时,PA+PC的最小,即BC的值就是PA+PC的最小值【解答】解:连接OA,OB,OC,作CH垂直于AB于H根据垂径定理,得到BE=AB=4,CF=CD=3,OE=3,OF=4,CH=OE+OF=3+4=7,BH=BE+EH=BE+CF=4+3=7,在直角BCH中根据勾股定理得到BC=7,则PA+PC的最小值为故答案为:【点评】正确理解BC的长是PA+PC的最小值,是解决本题的关键12(2014扬州)如图,以ABC的边BC为直径的O分别交AB、AC于点D、E,连结OD、OE,若A=65,则DOE=50【考点】圆的认识;三角形内角和定理;等腰三角形的性质;圆周角定理菁优网版权所有【专题】几何图形问题【分析】如图,连接BE由圆周角定理和三角形内角和定理求得ABE=25,再由“同弧所对的圆周角是所对的圆心角的一半”进行答题【解答】解:如图,连接BEBC为O的直径,CEB=AEB=90,A=65,ABE=25,DOE=2ABE=50,(圆周角定理)故答案为:50【点评】本题考查了圆的认识及三角形的内角和定理等知识,难度不大13(2015长沙)如图,AB是O的直径,点C是O上的一点,若BC=6,AB=10,ODBC于点D,则OD的长为4【考点】垂径定理;勾股定理菁优网版权所有【专题】压轴题【分析】根据垂径定理求得BD,然后根据勾股定理求得即可【解答】解:ODBC,BD=CD=BC=3,OB=AB=5,OD=4故答案为4【点评】题考查了垂径定理、勾股定理,本题非常重要,学生要熟练掌握14(2013咸宁)如图,在RtAOB中,OA=OB=3,O的半径为1,点P是AB边上的动点,过点P作O的一条切线PQ(点Q为切点),则切线PQ的最小值为2【考点】切线的性质;等腰直角三角形菁优网版权所有【专题】压轴题【分析】首先连接OP、OQ,根据勾股定理知PQ2=OP2OQ2,可得当OPAB时,即线段PQ最短,然后由勾股定理即可求得答案【解答】解:连接OP、OQPQ是O的切线,OQPQ;根据勾股定理知PQ2=OP2OQ2,当POAB时,线段PQ最短,在RtAOB中,OA=OB=3,AB=OA=6,OP=3,PQ=2故答案为:2【点评】本题考查了切线的性质、等腰直角三角形的性质以及勾股定理此题难度适中,注意掌握辅助线的作法,注意得到当POAB时,线段PQ最短是关键15(2013常州)如图,ABC内接于O,BAC=120,AB=AC,BD为O的直径,AD=6,则DC=2【考点】圆周角定理;含30度角的直角三角形;勾股定理;圆心角、弧、弦的关系菁优网版权所有【专题】压轴题【分析】根据直径所对的圆周角是直角可得BAD=BCD=90,然后求出CAD=30,利用同弧所对的圆周角相等求出CBD=CAD=30,根据圆内接四边形对角互补求出BDC=60再根据等弦所对的圆周角相等求出ADB=ADC,从而求出ADB=30,解直角三角形求出BD,再根据直角三角形30角所对的直角边等于斜边的一半解答即可【解答】解:BD为O的直径,BAD=BCD=90,BAC=120,CAD=12090=30,CBD=CAD=30,又BAC=120,BDC=180BAC=180120=60,AB=AC,ADB=ADC,ADB=BDC=60=30,AD=6,在RtABD中,BD=ADsin60=6=4,在RtBCD中,DC=BD=4=2故答案为:2【点评】本题考查了圆周角定理,直角三角形30角所对的直角边等于斜边的一半,以及圆的相关性质,熟记各性质是解题的关键16(2014青岛)如图,AB是O的直径,BD,CD分别是过O上点B,C的切线,且BDC=110连接AC,则A的度数是35【考点】切线的性质;圆周角定理菁优网版权所有【专题】几何图形问题【分析】首先连接OC,由BD,CD分别是过O上点B,C的切线,且BDC=110,可求得BOC的度数,又由圆周角定理,即可求得答案【解答】解:连接OC,BD,CD分别是过O上点B,C的切线,OCCD,OBBD,OCD=OBD=90,BDC=110,BOC=360OCDBDCOBD=70,A=BOC=35故答案为:35【点评】此题考查了切线的性质以及圆周角定理此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用17(2012镇江)如图,在平面直角坐标系xOy中,直线AB经过点A(4,0)、B(0,4),O的半径为1(O为坐标原点),点P在直线AB上,过点P作O的一条切线PQ,Q为切点,则切线长PQ的最小值为【考点】切线的性质;坐标与图形性质;垂线段最短;等腰直角三角形;矩形的判定与性质菁优网版权所有【专题】压轴题;推理填空题【分析】连接OP根据勾股定理知PQ2=OP2OQ2,当OPAB时,线段OP最短,即线段PQ最短【解答】解:连接OP、OQPQ是O的切线,OQPQ;根据勾股定理知PQ2=OP2OQ2,当POAB时,线段PQ最短;又A(4,0)、B(0,4),OA=OB=4,AB=4OP=AB=2,PQ=;故答案为:【点评】本题考查了切线的判定与性质、坐标与图形性质以及矩形的性质等知识点运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角来解决有关问题18(2014泰安)如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,ODAC,垂足为E,交O于D,连接BE设BEC=,则sin的值为 【考点】垂径定理;勾股定理;圆周角定理菁优网版权所有【专题】计算题【分析】连结BC,根据圆周角定理由AB是半圆的直径得ACB=90,在RtABC中,根据勾股定理计算出BC=6,再根据垂径定理由ODAC得到AE=CE=AC=4,然后在RtBCE中,根据勾股定理计算出BE=2,则可根据正弦的定义求解【解答】解:连结BC,如图,AB是半圆的直径,ACB=90,在RtABC中,AC=8,AB=10,BC=6,ODAC,AE=CE=AC=4,在RtBCE中,BE=2,sin=故答案为:【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧也考查了勾股定理和圆周角定理三解答题(共8小题)19(2014南通)如图,AB是O的直径,弦CDAB于点E,点M在O上,MD恰好经过圆心O,连接MB(1)若CD=16,BE=4,求O的直径;(2)若M=D,求D的度数【考点】垂径定理;勾股定理;圆周角定理菁优网版权所有【专题】几何综合题【分析】(1)先根据CD=16,BE=4,得出OE的长,进而得出OB的长,进而得出结论;(2)由M=D,DOB=2D,结合直角三角形可以求得结果;【解答】解:(1)ABCD,CD=16,CE=DE=8,设OB=x,又BE=4,x2=(x4)2+82,解得:x=10,O的直径是20(2)M=BOD,M=D,D=BOD,ABCD,D=30【点评】本题考查了圆的综合题:在同圆或等圆中,相等的弧所对的圆周角相等,直径所对的圆周角为直角;垂直于弦的直径平分弦,并且平分弦所对的弧20(2014无锡)如图,AB是半圆O的直径,C、D是半圆O上的两点,且ODBC,OD与AC交于点E(1)若B=70,求CAD的度数;(2)若AB=4,AC=3,求DE的长【考点】圆周角定理;平行线的性质;三角形中位线定理菁优网版权所有【专题】几何图形问题【分析】(1)根据圆周角定理可得ACB=90,则CAB的度数即可求得,在等腰AOD中,根据等边对等角求得DAO的度数,则CAD即可求得;(2)易证OE是ABC的中位线,利用中位线定理求得OE的长,则DE即可求得【解答】解:(1)AB是半圆O的直径,ACB=90,又ODBC,AEO=90,即OEAC,CAB=90B=9070=20,AOD=B=70OA=OD,DAO=ADO=55CAD=DAOCAB=5520=35;(2)在直角ABC中,BC=OEAC,AE=EC,又OA=OB,OE=BC=又OD=AB=2,DE=ODOE=2【点评】本题考查了圆周角定理以及三角形的中位线定理,正确证明OE是ABC的中位线是关键21(2014大庆)如图,AB是O的直径,弦CDAB于点E,点P在O上,PB与CD交于点F,PBC=C(1)求证:CBPD;(2)若PBC=22.5,O的半径R=2,求劣弧AC的长度【考点】垂径定理;圆周角定理;弧长的计算菁优网版权所有【专题】几何图形问题【分析】(1)先根据同弧所对的圆周角相等得出PBC=D,再由等量代换得出C=D,然后根据内错角相等两直线平行即可证明CBPD;(2)先由垂径定理及圆周角定理得出BOC=2PBC=45,再根据邻补角定义求出AOC=135,然后根据弧长的计算公式即可得出劣弧AC的长度【解答】解:(1)PBC=D,PBC=C,C=D,CBPD;(2)连结OC,ODAB是O的直径,弦CDAB于点E,=,PBC=DCB=22.5,BOC=BOD=2C=45,AOC=180BOC=135,劣弧AC的长为:=【点评】本题考查了圆周角定理,平行线的判定,垂径定理,弧长的计算,难度适中(2)中求出AOC=135是解题的关键22(2013兰州)已知,如图,直线MN交O于A,B两点,AC是直径,AD平分CAM交O于D,过D作DEMN于E(1)求证:DE是O的切线;(2)若DE=6cm,AE=3cm,求O的半径【考点】切线的判定;平行线的判定与性质;圆周角定理;相似三角形的判定与性质菁优网版权所有【专题】几何综合题;压轴题【分析】(1)连接OD,根据平行线的判断方法与性质可得ODE=DEM=90,且D在O上,故DE是O的切线(2)由直角三角形的特殊性质,可得AD的长,又有ACDADE根据相似三角形的性质列出比例式,代入数据即可求得圆的半径【解答】(1)证明:连接ODOA=OD,OAD=ODAOAD=DAE,ODA=DAEDOMNDEMN,ODE=DEM=90即ODDED在O上,OD为O的半径,DE是O的切线(2)解:AED=90,DE=6,AE=3,连接CDAC是O的直径,ADC=AED=90CAD=DAE,ACDADE则AC=15(cm)O的半径是7.5cm【点评】本题考查常见的几何题型,包括切线的判定,线段等量关系的证明及线段长度的求法,要求学生掌握常见的解题方法,并能结合图形选择简单的方法解题23(2014涪城区校级自主招生)已知:如图,在ABC中,AB=BC,D是AC中点,BE平分ABD交AC于点E,点O是AB上一点,O过B、E两点,交BD于点G,交AB于点F(1)求证:AC与O相切;(2)当BD=6,sinC=时,求O的半径【考点】切线的判定与性质;等腰三角形的性质;解直角三角形菁优网版权所有【专题】几何综合题;压轴题【分析】(1)连接OE,根据等腰三角形性质求出BDAC,推出ABE=DBE和OBE=OEB,得出OEB=DBE,推出OEBD,得出OEAC,根据切线的判定定理推出即可;(2)根据sinC=求出AB=BC=10,设O 的半径为r,则AO=10r,得出sinA=sinC=,根据OEAC,得出sinA=,即可求出半径【解答】(1)证明:连接OE,AB=BC且D是AC中点,BDAC,BE平分ABD,ABE=DBE,OB=OEOBE=OEB,OEB=DBE,OEBD,BDAC,OEAC,OE为O半径,AC与O相切(2)解:BD=6,sinC=,BDAC,BC=10,AB=BC=10,设O 的半径为r,则AO=10r,AB=BC,C=A,sinA=sinC=,AC与O相切于点E,OEAC,sinA=,r=,答:O的半径是【点评】本题考查了平行线的性质和判定,等腰三角形的性质和判定,解直角三角形,切线的性质和判定的应用,解(1)小题的关键是求出OEBD,解(2)小题的关键是得出关于r的方程,题型较好,难度适中,用了方程思想24(2013桂林)如图,在ABC中,C=90,BAC的平分线AD交BC于D,过点D作DEAD交AB于E,以AE为直径作O(1)求证:点D在O上;(2)求证:BC是O的切线;(3)若AC=6,BC=8,求BDE的面积【考点】切线的判定;勾股定理;相似三角形的判定与性质菁优网版权所有【专题】证明题;压轴题【分析】(1)连接OD,由DO为直角三角形斜边上的中线,得到OD=OA=OE,可得出点D在圆O上;(2)由AD为角平分线,得到一对角相等,再由OD=OA,利用等边对等角得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到OD与AC平行,根据两直线平行同位角相等即可得到ODB为直角,即BC与OD垂直,即可确定出BC为圆O的切线;(3)过E作EH垂直于BC,由OD与AC平行,得到ACB与ODB相似,设OD=OA=OE=x,表示出OB,由相似得比例列出关于x的方程,求出方程的解得到x的值,确定出OD与BE的长,进而确定出BD的长,再由BEH与ODB相似,由相似得比例求出EH的长,BED以BD为底,EH为高,求出面积即可【解答】(1)证明:连接OD,ADE是直角三角形,OA=OE,OD=OA=OE,点D在O上;(2)证明:AD是BAC的角平分线,CAD=DAB,OD=OA,OAD=ODA,CAD=ODA,ACOD,C=ODB=90,BC是O的切线;(3)解:在RtACB中,AC=6,BC=8,根据勾股定理得:AB=10,设OD=OA=OE=x,则OB=10x,ACOD,ACBODB,=,=,解得:x=,OD=,BE=102x=10=,=,即=,BD=5,过E作EHBD,EHOD,BEHBOD,=,EH=,SBDE=BDEH=【点评】此题考查了切线的判定,相似三角形的判定与性质,勾股定理,平行线的判定与性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 空心微球新材料生产线项目施工方案
- 2025国考西藏财监申论归纳概括预测卷及答案
- 难点详解人教版八年级上册物理光现象《光的反射》专题攻克试卷(含答案解析)
- 建筑施工废料处理与环保管理方案
- 解析卷人教版八年级上册物理《机械运动》章节测评试卷(含答案详解版)
- 考点解析-人教版八年级上册物理声现象《声音的特性》定向训练试题(含答案及解析)
- 2025国考江西粮储局行测政治理论预测卷及答案
- 建筑废料回收处理技术方案
- 考点解析-人教版八年级物理《功和机械能》综合测评试卷(解析版含答案)
- 钢结构工程材料选用与性能评估方案
- 医疗器械监督管理条例培训
- 《地震反演技术》课件
- 冷冻食品供货方案
- 2024年小学生航空航天知识竞赛题库附答案 (共150题)
- 军体拳第一套全套图文教程
- 主动脉内球囊反搏术的应用与护理
- 针刺伤预防与处理-2024中华护理学会团体标准
- 店长周工作总结数据报表模板
- 羽绒原料购销合同
- 2-2新能源汽车充电系统检修
- 敦煌舞智慧树知到期末考试答案章节答案2024年兰州文理学院
评论
0/150
提交评论