




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章 直线与平面习题2.11.求通过两点和的直线方程。解:直线的方向向量为,所以直线的方程为2.在给定的仿射坐标系中,求下列平面的普通方程和参数方程。(1)过点;(2)过点和轴;(3)过点和,平行于轴;(4)过点,平行于平面。解:(1)平面的方位向量为,所以平面的参数方程平面的普通方程为即(2)平面的方位向量为,所以平面的参数方程因为过轴,所以也可选经过的点为,那么参数方程也可以写为 平面的普通方程为即(3)平面的方位向量为,所以平面的参数方程平面的普通方程为即(4)平面的方位向量平行于平面,方位向量满足,因此可以选为。所以平面的参数方程平面的普通方程为即3.在直角坐标系中,求通过点并与平面和均垂直的平面方程。解:平面的法向量分别是,所求平面与均垂直,所以它的法向量与均垂直,因此平面的方程为即4. 在直角坐标系中,求经过点,垂直于平面的平面方程。解:设平面的法向量为,则它与垂直,它又与平面的法向量,故所以所求平面的方程为即5. 在直角坐标系中,设平面的方程为,其中。设此平面与三坐标轴分别交于,求三角形的面积和四面体的体积。解:由于,所以平面的三个截距分别为。因此四面体的体积为三角形的面积而所以6.设平面与连接两点和的线段相交于点,且,证明。证明:因为,所以由定比分点的坐标公式得到点的坐标将它们代入平面方程中得整理即得。习题2.21.求经过点,并且通过两平面与的交线的平面方程。解:经过交线的平面束方程为,其中不全为零。所求平面经过点,将它代入上式得到,可以取,因此平面的方程为2.判断下列各对平面的相关位置。(1)与;(2)与;(3)与。解:(1)平面的法向量分别是,它们不共线,所以两平面相交。(2)两平面的系数之比的关系为,所以两平面重合。(3)第二个平面的方程化为,所以两平面的系数之比的关系为,所以两平面平行。3.将下列直线的普通方程化为标准方程。(1)(2)解:(1)方程可写成所以标准方程为(2)标准方程为4.求通过点且与两平面均平行的直线方程。解:直线的方向向量与已知两平面均平行,所以得到于是直线的方程为5.判断下列各对直线的位置。(1);(2)解:(1)直线经过点,方向向量是,直线经过点,方向向量是。混合积所以两直线异面。(2)直线方程可分别化为经过的点分别是方向向量分别是混合积且所以两直线异面且互相垂直。6.求直线与平面的交点。解:将直线方程代人平面方程得到所以,故交点为。7.求通过直线且与直线平行的平面方程。解:通过直线的平面方程可设为,由于平面与直线平行,所以,即,故平面方程为。8. 在直角坐标系中,求直线在平面上的垂直投影直线的方程。解:垂直投影直线在过直线且垂直于平面的平面中,平面的方程为所以垂直投影直线方程是9. 在仿射坐标系中,求过直线且在轴和轴上有相同的非零截距的平面方程。解:通过直线的平面方程可设为,由于平面在轴和轴上有相同的非零截距,所以,即,故平面方程为10.在中,设分别是直线上的点,并且。证明三线共点的充要条件是。证明:取仿射标架,则点的坐标分别是直线的方程分别为三线共点的充要条件是的交点在直线上。的交点为,将该点的坐标代人直线的方程中化简得到。11.用坐标法证明契维定理:若三角形的三边依次分割成,其中均为正实数,则此三角形的顶点与对边分点的连线交于一点。证明:由于,由上题的结论知道三角形的顶点与对边分点的连线交于一点。12.证明:如果直线与直线交于一点,那么。证明:由于两直线交于一点,所以方程组有解,则齐次方程组有解,由齐次线性方程组有解的条件得到。13. 在直角坐标系中,给定点和,直线,设各为在上的垂足,求以及的坐标。解:为向量在直线的方向向量的方向上的分量,故过点作与直线垂直的平面,它的方程为,过点作与直线垂直的平面,它的方程为,将直线的参数方程分别代人,方程中,得所以14.求与三直线都相交的直线所产生的曲面的方程。解:与三直线都相交的直线设为,交点可设为,由于三点共线,所以,即有。直线的方程,即消去得到直线构成的曲面方程15.证明:包含直线,且平行于直线的平面方程为。若是之间的距离,证明。证明:包含直线的平面方程可设为,它的法向量为,它又与直线平行,此直线的方向向量是,所以,得到,于是平面方程为。直线的方向向量是,经过点。直线经过点,所以两直线的距离为,因此,故。习题2.31.在直角坐标系下,求下列直线方程。(1)过点且垂直于平面;(2)过点且与三坐标轴夹角相等。解:(1)直线的方向向量是平面的法向量,所以直线的方程为(2)设直线的方向向量是,由于直线与三坐标轴的夹角相等,所以于是。因此直线有4条,方程为,。2. 在直角坐标系中,求平面与面的夹角。解:平面的法向量为,面的法向量为,所以夹角的余弦为,夹角为或3.求到两个给定平面的距离成定比的点的轨迹。解:设点到两平面的距离之比为。如果两平面平行,则选直角坐标系使得其中一个平面为面,另一个平面的方程为,于是,当时,得。当时,得如果两平面相交,则选两平面的角平分面为两坐标面和,则两平面的方程可设为,于是即4.证明:空间中满足条件的点位于中心在原点,顶点在坐标轴上,且顶点与中心距离为的八面体的内部。证明:条件等价于八个不等式:,这些点对于平面来说都在负侧,即包含原点的那一侧。故它们位于由八个平面构成顶点在坐标轴上,且顶点与中心距离为的八面体的内部。5.在仿射坐标系中,设,都不在平面上,且。证明:与在平面的同侧的充分必要条件是与同号。证明:(1)与平面平行的充要条件是即与同号。(2)如果与平面不平行,则设直线与平面相交于点,且。因而与在平面的同侧的充分必要条件是。因为,所以与同号。6. 在直角坐标系中,求与平面平行且与它的距离为的平面方程。解:设点到平面的距离为,则因而所求平面的方程为7.求点到直线的距离。解:直线方程的标准形式为所以直线经过点,方向向量为,则,点到直线的距离为8.求下列各对直线之间的距离。(1)(2)(3)解:(1)两直线分别经过点,方向向量分别是,因此两直线平行,它们的距离为一直线的某点到另一直线的距离,所以,它们的距离为(2)两直线分别经过点,方向向量分别是,所以它们异面,它们的距离为(3)两直线方程的标准形式可写为两直线分别经过点,方向向量分别是,不平行,所以它们相交,它们的距离为0。9.求下列各对直线的公垂线的方程。(1)与(3)与解:(1)两直线的方向向量是,所以公垂线的方向向量为。公垂线在过直线且与向量平行的平面上,平面法向量是,所以该平面方程是。公垂线又在过直线且与向量平行的平面上,平面法向量是,所以该平面方程是,因此公垂线的方程是(2)两直线方程的标准形式可为,所以公垂线的方向向量为。公垂线在过直线且与向量平行的平面上,平面法向量是,所以该平面方程是。公垂线又在过直线,且与向量平行的平面上,平面法向量是,所以该平面方程是,因此公垂线的方程是10.求下列各对直线的夹角。(1)(2)解:(1)两直线的方向向量是,所以夹角满足因此夹角为。(2)两直线的方向向量是,所以夹角满足因此夹角为或11.求下列直线与平面的夹角。(1)(2)解:(1)直线的方向向量为,平面的法向量为,则,所以夹角满足因此夹角(2)直线的方向向量为,平面的法向量为,则,所以夹角满足因此夹角12.已知两条异面直线与,证明:连接上任一点和上任一点的线段的中点轨迹是公垂线段的垂直平分面。证明:以公垂线为轴,过公垂线段的中点与公垂线垂直的平面为面,两异面直线在面上的投影直线的角平分线为轴和轴建立空间直角坐标系。则两异面直线的方程可设为与其中是两直线的距离,。现在从两直线上分别任取一点,则它们的中点满足,这是公垂线段的垂直平分面的参数方程,所以中点轨迹是公垂线段的垂直平分面。13.设在直角坐标系中,平面与的方程分别为和求由与构成的二面角的角平分面的方程,在此二面角内有点。解:角平分面上的点到两平面的距离相等,所以,由于该二面角内有点,且,所以在的负侧,在的正侧,因此角平分面上的点在的负侧,在的正侧,或在的正侧,在的负侧,所以角平分面上的点满足,整理得到14.证明
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高校餐饮服务合同模板(3篇)
- 目标练:去括号法则的应用
- qcc知识考试题及答案
- 教育机构劳动合同中教师薪资及补贴发放协议
- 2025公务员温州面试题及答案
- 央美考研专业试题及答案
- 计算机专业线上试题及答案
- 2025至2030中国园林绿化产品行业运营态势与投资前景调查研究报告
- 小班下学期副班工作总结
- 初中现代诗歌教学课件
- 2025年秋季开学全体教职工大会校长讲话:35分钟会议把所有老师骂醒了
- 2025高级工程师聘用合同
- 输变电工程建设现行主要质量管理制度、施工与验收质量标准目录-2026年2月版-
- 1.3 植物与阳光(教学课件)科学青岛版二年级上册(新教材)
- 3.2《参与民主生活 》- 课件 2025-2026学年度道德与法治九年级上册 统编版
- 诺如知识培训方案课件
- 企业文化建设及推广工具箱
- 福建省三明市2026届高三上学期8月月考语文试卷(含答案)
- 2025年智能养老社区智能化社区活动策划建议
- 浙江新化化工股份有限公司扩建6000吨-年新型无卤有机阻燃剂项目环评报告
- 2025-2026学年人教版(2024)初中生物八年级上册教学计划及进度表
评论
0/150
提交评论