已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版九年级数学下第三章圆,3.3垂径定理,宁夏青铜峡市四中李全军,等腰三角形是轴对称图形吗?如果将一等腰三角形沿底边上的高对折,可以发现什么结论?如果以这个等腰三角形的顶角顶点为圆心,腰长为半径画圆,得到的图形是否是轴对称图形呢?,如图,AB是O的一条弦,作直径CD,使CDAB,垂足为M。(1)该图是轴对称图形吗?如果是,其对称轴是什么?(2)图中有哪些等量关系?说一说你的理由。,视频播放,CDAB,CD是直径,AM=BM,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。,几何语言,判断下列图形,能否使用垂径定理?,注意:定理中的两个条件缺一不可直径(半径),垂直于弦,B,CDAB,垂径定理的逆定理,由CD是直径,AM=BM,平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.,如图,AB是O的弦(不是直径),作一条平分AB的直径CD,交AB于点M.(1)下图是轴对称图形吗?如果是,其对称轴是什么?(2)图中有哪些等量关系?说一说你的理由.,平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.如果该定理少了“不是直径”,是否也能成立?,解这个方程,得R=545.,解:连接OC,设弯路的半径为Rm,则OF=(R-90)m。,OECD,根据勾股定理,得OC=CF+OF,即R=300+(R-90).,所以,这段弯路的半径为545m.,1、1400年前,我国隋朝建造的赵州石拱桥的桥拱是圆弧形,它的跨度(弧所对的弦长)为37.4米,拱高(即弧的中点到弦的距离)为7.2米,求桥拱所在圆的半径。(结果精确到0.1米)。,2、如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?为什么?,有三种情况:1、圆心在平行弦外;2、圆心在其中一条弦上;3、圆心在平行弦内。,1、利用圆的轴对称性研究了垂径定理及其逆定理.2、解决有关弦的问题,经常是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电化学储能项目技术方案
- 智能公墓管理系统实施方案
- 金属材料加工建设项目技术方案
- 绕城高速公路工程施工方案
- 应急预案演练方案题目(3篇)
- 有益菌复合微生物肥料项目规划设计方案
- 露天煤矿改扩建项目投资计划书
- 新能源汽车产业园项目实施方案
- 2025年连江县特岗教师笔试真题汇编附答案解析
- 乙二酸技改项目投标书
- 供应链管理在制造业供应链协同中的创新与实践报告
- 2025年药店岗前培训试题(含答案)
- 贵州国企招聘:2025贵州凉都能源有限责任公司招聘10人备考题库含答案详解(综合题)
- 纯种宠物繁殖中的遗传多样性管理
- 小麦病虫害识别及“一喷三防”技术课件
- 车间经理个人成长计划书
- EPC项目设计管理机构的构成
- 矿山洗选与选矿技术
- 马工程《商法》商法总论课本期末复习笔记材料整理
- 同济大学信纸
- 硫磺安全技术说明书MSDS
评论
0/150
提交评论