




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二十一章 一元二次方程 教材分析及相关练习一、(一)课程学习目标课标要求理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程;会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等;*了解一元二次方程的根与系数的关系。1联系一元一次方程和函数的基本知识,继续探索实际问题中的数量关系及其变化规律,让学生进一步体会“方程是刻画现实世界的一个有效的数学模型”2以分析实际问题中的等量关系并求解其中的未知数为背景,认识一元二次方程及其有关概念.3根据化归的思想,抓住“降次”这一基本策略,掌握开平方法、配方法、公式法和因式分解法等一元二次方程的基本解法.4经历分析和解决实际问题的过程,体会一元二次方程的数学模型作用,进一步提高在实际问题中运用方程这种重要数学工具的基本能力.(二)中考考试要求:源自2017中考说明ABC一元二次方程了解一元二次方程的有关概念;理解配方法;会用一元二次方程的根的判别式判断方程根的情况能用适当的方法解数字系数的一元二次;能用根的判别式解决与一元二次方程根有关的问题运用方程与不等式的有关内容解决有关问题(2016)考试内容 考试要求ABC一元二次方程了解一元二次方程的有关概念. 理解配方法;会用一元二次方程根的判别式判断方程根的情况.能选择适当的方法解数字系数一元二次方程;能有根的判别式解决与一元二次方程根有关的问题 运用方程有关内容解决有关问题二、本章知识结构框图三、课时安排 本章教学时间约需16课时,具体分配如下(仅供参考):22.1一元二次方程(1课时)22.2降次解一元二次方程(共9课时) 直接开方法(1课时) 配方法(1课时) 公式法(2课时) 因式分解法(2课时) 解法综合课(1课时) 一元二次方程根的判别式(2课时)22.3实际问题与一元二次方程(4课时)数学活动与小结(2课时)四、教学建议(一)联系已有的相关知识,如一次方程、方程组,以及函数知识,以求进一步提高学生整体应用数学建模思想的意识和能力一元二次方程的解法中,渗透“降次”的转化思想,体会不同解法的优缺点与相互的联系,培养学生灵活解一元二次方程的能力与扎实的运算功底对实际问题的探索不要以繁、难、偏、旧的问题作为学生探究性学习的题材(二)对于“一元二次方程根的判别式”,教材没有明确给出概念,而是以归纳的形式引导学生探究一元二次方程根的个数与的关系;为了教学方便,可以介绍判别式的概念,适当添加习题,使学生理解一元二次方程根的存在情况与系数的关系(三)对于“一元二次方程根与系数的关系(韦达定理)”,为了后续学习(包括初、高中函数的学习)的方便,可根据学生情况,在教学中安排12课时,组织学生进行这方面的简单探究活动。 五、教学中应注意的问题本章教学重点、难点 1.本部分教材的重点是一元二次方程的解法 2.一元二次方程的应用是本章的一个难点 3.培养学生注意观察一元二次方程的结构特征,正确地选用适当方法解一元二次方程是本章的一个重点,也是一个难点.(一)、一元二次方程的概念1理解并掌握一元二次方程的意义未知数个数为1,未知数的最高次数为2,整式方程,可化为一般形式;2正确识别一元二次方程中的各项及各项的系数(1)让学生明确只有当二次项系数时,整式方程才是一元二次方程。(2)各项的确定(包括各项的系数及各项的未知数).(3)让学生熟练整理方程的过程3一元二次方程的解的定义与检验一元二次方程的解4列出实际问题的一元二次方程(二)、一元二次方程的解法1让学生明确一元二次方程是以降次为目的,以配方法、开平方法、公式法、因式分解法等方法为手段,从而把一元二次方程转化为一元一次方程求解;2要让学生能观察方程系数的特点,熟练地选用配方法、开平方法、公式法、因式分解法等方法解一元二次方程;3引导学生体会不同解法的相互的联系;4值得注意的几个问题:(1)开平方法:对于形如或的一元二次方程,即一元二次方程的一边是含有未知数的一次式的平方,而另一边是一个非负数,可用开平方法求解.形如的方程的解法:当时,;当时,;当时,方程无实数根。(2)配方法:通过配方的方法把一元二次方程转化为的方程,再运用开平方法求解。配方法的一般步骤:(不同解题顺序的对比和思考,理解其合理性)移项:把一元二次方程中含有未知数的项移到方程的左边,常数项移到方程的右边;“系数化1”:根据等式的性质把二次项的系数化为1;配方:将方程两边分别加上一次项系数一半的平方,把方程变形为的形式;求解:若时,方程的解为,若时,方程无实数解。(3)公式法:一元二次方程的根当时,方程有两个实数根,且这两个实数根不相等;当时,方程有两个实数根,且这两个实数根相等,写为;当时,方程无实数根.公式法的一般步骤:把一元二次方程化为一般式;确定的值;代入中计算其值,判断方程是否有实数根;若代入求根公式求值,否则,原方程无实数根。(因为这样可以减少计算量。另外,求根公式对于任何一个一元二次方程都适用,其中也包括不完全的一元二次方程。)(4)因式分解法:(复习十字相乘法)因式分解法解一元二次方程的依据:如果两个因式的积等于0,那么这两个因式至少有一个为0,即:若,则;【学生的易错点为:】因式分解法的一般步骤:将方程化为一元二次方程的一般形式;把方程的左边分解为两个一次因式的积,右边等于0;令每一个因式都为零,得到两个一元一次方程;解出这两个一元一次方程的解可得到原方程的两个解。(5)选用适当方法解一元二次方程对于无理系数的一元二次方程,可选用因式分解法,较之别的方法可能要简便的多,只不过应注意二次根式的化简问题。方程若含有未知数的因式,选用因式分解较简便,若整理为一般式再解就较为麻烦。【明确每种解法的关键:】 因式分解解法的关键是_;公式法解方程的关键是_;直接开平方法解方程的关键是_;配方法解方程的关键是_.(6)解含有字母系数的方程(1)含有字母系数的方程,注意讨论含未知数最高项系数,以确定方程的类型;(2)对于字母系数的一元二次方程一般用因式分解法解,不能用因式分解的可选用别的方法,此时一定嘱咐学生不要忘记对字母的取值进行讨论。(三)、根的判别式1让学生了解一元二次方程根的判别式概念,能用判别式判定根的情况,并会用判别式求一元二次方程中符合题意的参数取值范围。(1)=(2)根的判别式定理及其逆定理:对于一元二次方程()当方程有实数根;(当方程有两个不相等的实数根;当方程有两个相等的实数根;)当方程无实数根; 【学生容易混淆的是:】从左到右为根的判别式定理;从右到左为根的判别式逆定理。2常见的问题类型(1)利用根的判别式定理,不解方程,判别一元二次方程根的情况(2)已知方程中根的情况,如何由根的判别式的逆定理确定参数的取值范围(3)应用判别式,证明一元二次方程根的情况先计算出判别式(关键步骤);用配方法将判别式恒等变形;判断判别式的符号;总结出结论.例:求证:方程无实数根。(4)分类讨论思想的应用:如果方程给出的时未指明是二次方程,后面也未指明两个根,那一定要对方程进行分类讨论,如果二次系数为0,方程有可能是一元一次方程;如果二次项系数不为0,一元二次方程可能会有两个实数根或无实数根。(5)一元二次方程根的判别式常结合三角形、四边形、不等式(组)等知识综合命题,解答时要在全面分析的前提下,注意合理运用代数式的变形技巧(6)一元二次方程根的判别式与整数解的综合(7)判别一次函数与反比例函数图象的交点问题(四)、一元二次方程的应用1.数字问题:解答这类问题要能正确地用代数式表示出多位数,奇偶数,连续整数等形式。2.几何问题:这类问题要结合几何图形的性质、特征、定理或法则来寻找等量关系,构建方程,对结果要结合几何知识检验。3.增长率问题(下降率):在此类问题中,一般有变化前的基数(),增长率(),变化的次数(),变化后的基数(),这四者之间的关系可以用公式表示。4.其它实际问题(都要注意检验解的实际意义,若不符合实际意义,则舍去)。(五)新题型与代几综合题(1)有100米长的篱笆材料,想围成一矩形仓库,要求面积不小于600平方米,在场地的北面有一堵50米的旧墙,有人用这个篱笆围成一个长40米、宽10米的仓库,但面积只有400平方米,不合要求,问应如何设计矩形的长与宽才能符合要求呢?(2)读诗词解题(列出方程,并估算出周瑜去世时的年龄):大江东去浪淘尽,千古风流数人物,而立之年督东吴,英年早逝两位数,十位恰小个位三,个位平方与寿符,哪位学子算得准,多少年华属周瑜?(36岁)(3)已知:分别是的三边长,当时,关于的一元二次方程有两个相等的实数根,求证:是直角三角形。(4)已知:分别是的三边长,求证:方程没有实数根。(5)当是什么整数时,关于的一元二次方程与的根都是整数?()(6)已知关于的方程,其中为实数,(1)当为何值时,方程没有实数根?(2)当为何值时,方程恰有三个互不相等的实数根?求出这三个实数根。答案:(1)(2).(六)相关练习(一) 一元二次方程的概念1一元二次方程的项与各项系数把下列方程化为一元二次方程的一般形式,再写出二次项,一次项,常数项:(1) (2) (3) (4) (5) 2应用一元二次方程的定义求待定系数或其它字母的值(1)为何值时,关于的方程是一元二次方程。()(2)若分式,则 ()3由方程的根的定义求字母或代数式值(1)关于的一元二次方程有一个根为0,则 ()(2)已知关于的一元二次方程有一个根为1,一个根为,则 , (0,0) (3)已知c为实数,并且关于的一元二次方程的一个根的相反数是方程的一个根,求方程的根及c的值。 (0,-3, c=0)(二)一元二次方程的解法1开平方法解下列方程:(1) () (2) ()(3)(原方程无实根) (4) ()(5) ()2配方法解方程:(1) () (2) ()(3) ()3公式法解下列方程:(1) () (2) ()(3) () (4) (原方程无实数根)(5) ()4因式分解法解下列方程:(1)() (2)()(3)() (4) ()(5)() (6)()(7) ()5解法的灵活运用(用适当方法解下列方程):(1) () (2)()(3) ()(4) ()(5) ()6解含有字母系数的方程(解关于x的方程):(1) () (2) ()(3) () ( )(4) (讨论a)(三)一元二次方程的根的判别式1不解方程判别方程根的情况:(1)4(有两个不等的实数根) (2) (无实数根)(3) (有两个相等的实数根)2为何值时,关于x的二次方程(1)有两个不等的实数根 ()(2)有两个相等的实数根 ()(3)无实数根 ()3已知关于的方程有两个相等的实数根求的值和这个方程的根 (或)4若方程有实数根,求:正整数a. ()5m为实数,判断关于x的方程根的情况.6为何值时,关于x的方程有实数根?(当时,原方程有一个实数根,;当时,解得,所以当且时方程有两个实数根。综上所述,当时,方程有实数根.)7设为整数,且时,方程有两个相异整数根,求的值及方程的根。(当=12时,方程的根为;当=24时,方程的根为)(四)一元二次方程的应用1已知直角三角形三边长为三个连续整数,求它的三边长和面积.(3,4,5,面积为6)2一个两位数,个位上的数字比十位上的数字少4,且个位数字与十位数字的平方和比这个两位数小4,求这个两位数.(84)3某印刷厂在四年中共印刷1997万册书,已知第一年印刷了342万册,第二年印刷了500万册,如果以后两年的增长率相同,那么这两年各印刷了多少万册? (550, 605)4某人把5000元存入银行,定期一年到期后取出300元,将剩余部分(包括利息)继续存入银行,定期还是一年,且利率不变,到期如果全部取出,正好是275元,求存款的年利率?(不计利息税) (10)5某商场销售一批名牌衬衫,平均每天可以售出20件,每件盈利40元,为了扩大销售增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价1元,商场每天可多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元? (20元)6已知甲乙两人分别从正方形广场ABCD的顶点B、C同时出发,甲由C向D运动,乙由B向C运动,甲的速度为每分钟1千米,乙的速度每分钟2千米,若正方形广场周长为40千米,问几分钟后,两人相距千米? (2分钟后) 7某科技公司研制一种新产品,决定向银行贷款200万元资金,用于生产这种产品,签订的合同上约定两年到期时一次性还本付息,利息为本金的8%,该产品投放市场后由于产销对路,使公司在两年到期时除还清贷款的本金和利息外,还盈余72万元,若该公司在生产期间每年比上一年资金增长的百分数相同,试求这个百分数. (20%)8如图,东西和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国蓝牙手机配件行业发展前景预测及投资策略研究报告
- 2025年 云南省社会工作者工作实务技能知识考试练习题附答案
- 2021-2026年中国空气预热器行业发展监测及投资战略规划研究报告
- 2025年中国工业烤箱市场发展前景预测及投资战略咨询报告
- 中国智能条形显示屏行业市场发展前景及发展趋势与投资战略研究报告(2024-2030)
- 中国小麦行业市场调查研究及投资前景预测报告
- 2025年 甘肃招聘聘用制教师考试试题附答案
- 2025年中国电链锯行业市场全景分析及投资策略研究报告
- 2023-2029年中国装修板材行业市场深度评估及投资战略规划报告
- 中国大楔角Ⅴ带项目投资可行性研究报告
- 2025春季学期国开电大专科《机械制图》一平台在线形考(形成性任务1至4)试题及答案
- 文具店创业计划书文具店创业准备计划书范文
- 银川永宁县社区工作者招聘笔试真题2024
- 浙江省强基联盟2024-2025学年高二下学期5月联考试题 物理 PDF版含解析
- 企业政策宣讲活动方案
- 自来水考试试题大题及答案
- (2025)发展对象考试题库与答案
- 北京师范大学《微积分(2)》2023-2024学年第二学期期末试卷
- 鸿蒙模拟试题及答案
- 天津市滨海新区第四共同体2025年八下物理期末复习检测试题含解析
- 客服投诉处理技巧培训
评论
0/150
提交评论