




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
全等三角形判定一(SSS,SAS)(提高)【学习目标】1理解和掌握全等三角形判定方法1“边边边”,和判定方法2“边角边”; 2能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等. 【要点梳理】【高清课堂:379109 全等三角形判定一,基本概念梳理回顾】要点一、全等三角形判定1“边边边” 全等三角形判定1“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).要点诠释:如图,如果AB,AC,BC,则ABC. 要点二、全等三角形判定2“边角边”1. 全等三角形判定2“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).要点诠释:如图,如果AB ,A,AC ,则ABC. 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,ABC与ABD中,ABAB,ACAD,BB,但ABC与ABD不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.【典型例题】类型一、全等三角形的判定1“边边边”1、如图,在ABC和ADE中,ABAC,ADAE,BDCE,求证:BADCAE.【答案与解析】证明:在ABD和ACE中,ABDACE(SSS)BADCAE(全等三角形对应角相等).【总结升华】把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的判定和性质. 要证BADCAE,先找出这两个角所在的三角形分别是BDA和CAE,然后证这两个三角形全等.举一反三:【高清课堂:379109 全等三角形的判定(一) 同步练习6】【变式】已知:如图,ADBC,ACBD.试证明:CADDBC.【答案】证明:连接DC, 在ACD与BDC中ACDBDC(SSS)CADDBC(全等三角形对应角相等)类型二、全等三角形的判定2“边角边”2、如图,AD是ABC的中线,求证:ABAC2AD 【思路点拨】延长AD到点E,使ADDE,连接CE通过证全等将AB转化到CEA中,同时也构造出了2AD利用三角形两边之和大于第三边解决问题.【答案与解析】证明:如图,延长AD到点E,使ADDE,连接CE在ABD和ECD中,ADDE,ADBEDC,BDCDABDECDABCEACCEAE,ACABAE2AD即ACAB2AD【总结升华】证明边的大小关系主要有两个思路:(1)两点之间线段最短;(2)三角形的两边之和大于第三边要证明ABAC2AD,如果归到一个三角形中,边的大小关系就是显然的,因此需要转移线段,构造全等三角形是转化线段的重要手段可利用旋转变换,把ABD绕点D逆时针旋转180得到CED,也就把AB转化到CEA中,同时也构造出了2AD若题目中有中线,倍长中线,利用旋转变换构造全等三角形是一种重要方法 举一反三:【变式】(2014秋慈溪市校级期中)如图,把两根钢条AA,BB的中点连在一起,可以做成一个测量内槽宽的卡钳,卡钳的工作原理利用了三角形全等判定定理 【答案】SAS解:卡钳的工作原理利用了三角形全等判定定理SAS,理由如下:O是AA,BB的中点,AO=AO,BO=BO,又AOB与AOB是对顶角,AOB=AOB,在AOB和AOB中,AOBAOB(SAS),AB=AB,只要量出AB的长度,就可以知道工作的内径AB是否符合标准3、已知,如图:在ABC中,B2C,ADBC,求证:ABCDBD 【思路点拨】在DC上取一点E,使BDDE,则ABDAED,所以ABAE,只要再证出ECAE即可【答案与解析】AEDCB证明:在DC上取一点E,使BDDE ADBC,ADBADE在ABD和AED中, BDDE,ADADABDAED(SAS)ABAE,BAED又B2CAEDCEACCEACAEECABAEECCDDECDBD【总结升华】此题采用截长或补短方法.上升到解题思想,就是利用翻折变换,构造的全等三角形,把条件集中在基本图形里面,从而使问题加以解决如图,要证明ABCDBD,把CDBD转化为一条线段,可利用翻折变换,把ABD沿AD翻折,使线段BD运动到DC上,从而构造出CDBD,并且也把B转化为AEB,从而拉近了与C的关系. 举一反三:【变式】已知,如图,在四边形ABCD中,AC平分BAD,CEAB于E,并且AE(ABAD),求证:BD180.【答案】证明:在线段AE上,截取EFEB,连接FC,CEAB,CEBCEF90在CBE和CFE中,CBECFE(SAS)BCFEAE(ABAD),2AE ABADAD2AEABAEAFEF,AD2(AFEF)AB2AF2EFABAFAFEFEBABAFABAB,即ADAF在AFC和ADC中AFCADC(SAS)AFCDAFCCFE180,BCFE.AFCB180,BD180.类型三、全等三角形判定的实际应用4、(2014秋紫阳县期末)雨伞的中截面如图所示,伞骨AB=AC,支撑杆OE=OF,AE=AB,AF=AC,当O沿AD滑动时,雨伞开闭,问雨伞开闭过程中,BAD与CAD有何关系?说明理由【思路点拨】证角相等,常常通过把角放到两个全等三角形中来证,本题OA=OA公共边,可考虑SSS证明三角形全等,从而推出角相等【答案与解析】解:雨伞开闭过程中二者关系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 雇佣月嫂合同5篇
- 房地产项目借款合同书范本7篇
- GB/T 46075.6-2025电子束焊机验收检验第6部分:束斑位置稳定性的测量
- 窗户包工合同5篇
- 挖机合同租赁合同5篇
- 大学生心理健康教育 课件 第十一章大学生的网络心理辅导
- 资料员之资料员基础知识能力检测试卷(考点提分)附答案详解
- 2024河北省辛集市中考数学复习提分资料【重点】附答案详解
- 自考专业(建筑工程)考试历年机考真题集【B卷】附答案详解
- 耐药菌感染的预防护理与控制策略
- 第08讲+建议信(复习课件)(全国适用)2026年高考英语一轮复习讲练测
- 2024广东省产业园区发展白皮书-部分1
- 2025年国家网络安全宣传周网络安全知识考核试题
- 2025四川蜀道建筑科技有限公司招聘16人备考练习题库及答案解析
- 生态视角下陕南乡村人居环境适老化设计初步研究
- “研一教”双驱:名师工作室促进区域青年教师专业发展的实践探索
- 2025-2030中国教育领域的虚拟现实技术行业发展战略与应用趋势预测报告
- 2025广西现代物流集团第三次招聘109人笔试备考试题及答案解析
- 手卫生及消毒隔离基本知识
- 2025年上海市安全员-A证(企业主要负责人)考试题库及答案
- 2025年中职历史考试题及答案
评论
0/150
提交评论