已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.4全称量词与存在量词,P21思考:下列语句是命题吗?(1)与(3),(2)与(4)之间有什么关系?(1)x3;(2)2x+1是整数;(3)对所有的xR,x3;(4)对任意一个xZ,2x+1是整数。,语句(1)(2)不能判断真假,不是命题;语句(3)(4)可以判断真假,是命题。,全称量词、全称命题定义:短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“”表示。含有全称量词的命题,叫做全称命题。,常见的全称量词还有“一切”“每一个”“任给”“所有的”等。,全称命题举例:,全称命题符号记法:,命题:对任意的nZ,2n+1是奇数;所有的正方形都是矩形。,通常,将含有变量x的语句用p(x),q(x),r(x),表示,变量x的取值范围用M表示,那么,,解:(1)假命题;(2)真命题;(3)假命题。,例1判断下列全称命题的真假:(1)所有的素数都是奇数;(2)(3)对每一个无理数x,x2也是无理数。,小结:,需要对集合M中每个元素x,证明p(x)成立,只需在集合M中找到一个元素x0,使得p(x0)不成立即可(举反例),P23练习:,1判断下列全称命题的真假:(1)每个指数函数都是单调函数;(2)任何实数都有算术平方根;(3),P22思考:下列语句是命题吗?(1)与(3),(2)与(4)之间有什么关系?(1)2x+1=3;(2)x能被2和3整除;(3)存在一个x0R,使2x+1=3;(4)至少有一个x0Z,x能被2和3整除。,语句(1)(2)不能判断真假,不是命题;语句(3)(4)可以判断真假,是命题。,存在量词、特称命题定义:短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“”表示。含有存在量词的命题,叫做特称命题。,常见的存在量词还有“有些”“有一个”“对某个”“有的”等。,特称命题举例:,特称命题符号记法:,命题:有的平行四边形是菱形;有一个素数不是奇数。,通常,将含有变量x的语句用p(x),q(x),r(x),表示,变量x的取值范围用M表示,那么,,解:(1)假命题;(2)假命题;(3)真命题。,例2判断下列特称命题的真假:(1)有一个实数x0,使x02+2x0+3=0;(2)存在两个相交平面垂直于同一条直线;(3)有些整数只有两个正因数。,小结:,需要证明集合M中,使p(x)成立的元素x不存在。,只需在集合M中找到一个元素x0,使得p(x0)成立即可(举例证明),P23练习:,2判断下列特称命题的真假:(1)(2)至少有一个整数,它既不是合数,也不是素数;(3),解:(1)真命题;(2)真命题;(3)真命题。,练习,(2)存在这样的实数它的平方等于它本身。(3)任一个实数乘以-1都等于它的相反数;(4)存在实数x,x3x2;,小结:,2、全称命题的符号记法。,1、全称量词、全称命题的定义。,3、判断全称命题真假性的方法。,4、存在量词、特称命题的定义。,5、特称命题的符号记法。,6、判断特称命题真假性的方法。,同一全称命题、特称命题,由于自然语言的不同,可能有不同的表述方法:,表述方法,作业,1、P31第5题。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025深圳展会活动合作合同范本
- 安全双控题库及答案解析
- 2025合同意向书范本模板
- 员工岗前安全培训考试题及答案解析
- 2025至2030全球及中国汽车语音控制系统行业产业运行态势及投资规划深度研究报告
- 2025至2030机场看台行业发展趋势分析与未来投资战略咨询研究报告
- 2025年锌合金市场调研报告
- 2025-2030绿色智能建筑认证标准对行业发展的影响分析
- 2025-2030绿色建材市场发展路径与环保政策影响深度调研
- 2025-2030经颅直流电刺激结合认知训练的商业化伦理边界探讨
- 光伏发电项目招标文件
- 12路基轻质填料EPS工法
- 美容师中级评分记录表
- 袋式除尘器日常点检表
- 人音版小学音乐三年级上册测试题(音乐理论)及答案
- 教师资格面试-75篇结构化逐字稿
- 油田生产调度管理与人员素质提升
- Aspen 中文培训资料
- GB 1886.358-2022食品安全国家标准食品添加剂磷脂
- GB/T 16422.2-2022塑料实验室光源暴露试验方法第2部分:氙弧灯
- GB/T 10045-2018非合金钢及细晶粒钢药芯焊丝
评论
0/150
提交评论