数学人教版六年级下册“抽屉原理”教学课件.ppt_第1页
数学人教版六年级下册“抽屉原理”教学课件.ppt_第2页
数学人教版六年级下册“抽屉原理”教学课件.ppt_第3页
数学人教版六年级下册“抽屉原理”教学课件.ppt_第4页
数学人教版六年级下册“抽屉原理”教学课件.ppt_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

抽屉原理(一),把四根小棒放进三个纸杯中有几种放法?,小组合作,不管怎么放,至少有2根小棒要放进同一个纸杯里.,把4枝笔放进3个盒子中。,看看有几种放法?通过摆放,你发现了什么?,不管怎么放,总有一个盒子里至少放进2枝笔.,不管怎么放,总有一个盒子里至少放进2枝铅笔.,你能用更直接的方法,只摆一种情况,就能得到这个结论吗?通过这样摆放你有什么发现?,至少,总有,总有一个笔筒里至少放进2枝铅笔,把4枝铅笔放进3个笔筒里,如果每个笔筒里放1枝铅笔,剩下的()枝铅笔所以,总有一个笔筒里至少放()枝铅笔。,3,1,2,还要放进其中一个笔筒里,,最多放()枝铅笔,,把5枝笔放进4个盒子中。,把5枝铅笔放在4个文具盒里,还是不管怎么放,总有一个文具盒里至少放进了2枝铅笔吗?,为什么会有这样的结果?,这样分实际上是怎样在分?怎样列式?,平均分,把6枝铅笔放在4个文具盒里,会有什么结果呢?,讨论:,把5个苹果放进4个抽屉里,不管怎么放总有一个抽屉里至少有()苹果。,有5个苹果,要放入4个抽屉中,有几种不同的分法?请你试试看!,?,5可以分成(5、0、0、0)、(4、1、0、0)、(3、2、0、0)、(3、1、1、0)(2、2、1、0)、(2、1、1、1),有5个苹果,要放入4个抽屉中,那么总有一个抽屉里面至少会放2个苹果。,至少,54=1(个)1(个),1、如果把6个苹果放入5个抽屉中,至少有几个放到同一个抽屉里?,(2个),2、如果把7个苹果放入6个抽屉中,至少有几个放到同一个抽屉里呢?,3、如果把100个苹果放入99个抽屉中,至少有几个放到同一个抽屉里呢?,(2个),(2个),1、如果把6个苹果放入4个抽屉中,至少有几个苹果被放到同一个抽屉里呢?,请你想一想,?,2、如果把8个苹果放入5个抽屉中,至少有几个苹果被放到同一个抽屉里呢?,(2个),(2个),抽屉原理一:,只要物体数量是抽屉数量的1倍多,总有一个抽屉里放进2个的物体。,至少,1、如果把9个苹果放入4个抽屉中,总有一个抽屉里至少放了()个苹果。,继续挑战:,2、如果把14个苹果放入4个抽屉中,总有一个抽屉里至少放了()个苹果。,3,4,94=2(个)1(个),144=3(个)2(个),把6枝笔放进4个盒子呢?把5枝笔放进2个盒子呢?,把5枝笔放进3个盒子中。,“抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。我们应用这一原理可以解决生活中许多有趣的问题。,你知道吗?,至少数=商数+1,计算绝招,整除时至少数=商数,物体数抽屉数,抽屉原理,在有些问题中,“抽屉”和“苹果”不是很明显,需要我们制造出“抽屉”和“苹果”.制造出“抽屉”和“苹果”是比较困难的,这一方面需要同学们去分析题目中的条件和问题,另一方面需要多做一些题来积累经验.,在学习中,同学们要着重注意在每一道题中怎样识别“抽屉”,又把什么当作“苹果”,而且苹果的数目一定要大于抽屉的数目。,必须把题目中的一些条件想成“抽屉”,并知道它的数目,如上面例子中的小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论