




免费预览已结束,剩余18页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.2.3立体几何中的向量方法(三),空间“角度”问题,一、复习引入,用空间向量解决立体几何问题的“三步曲”。,(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;,(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;,(3)把向量的运算结果“翻译”成相应的几何意义。,(化为向量问题),(进行向量运算),(回到图形),向量的有关知识:,两向量数量积的定义:ab=|a|b|cosa,b,两向量夹角公式:cosa,b=,直线的方向向量:与直线平行的非零向量,平面的法向量:与平面垂直的向量,(课本第107页练习2)如图,60的二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直AB,已知AB4,AC6,BD8,求CD的长.,二面角的平面角,方向向量法将二面角转化为二面角的两个面的方向向量(在二面角的面内且垂直于二面角的棱)的夹角。如图(2),设二面角的大小为其中AB,例1:如图3,甲站在水库底面上的点A处,乙站在水坝斜面上的点B处。从A,B到直线(库底与水坝的交线)的距离AC和BD分别为和,CD的长为,AB的长为。求库底与水坝所成二面角的余弦值。,解:如图,,化为向量问题,根据向量的加法法则,进行向量运算,于是,得,设向量与的夹角为,就是库底与水坝所成的二面角。,因此,所以,回到图形问题,库底与水坝所成二面角的余弦值为,例1:如图3,甲站在水库底面上的点A处,乙站在水坝斜面上的点B处。从A,B到直线(库底与水坝的交线)的距离AC和BD分别为和,CD的长为,AB的长为。求库底与水坝所成二面角的余弦值。,思考:,(1)本题中如果夹角可以测出,而AB未知,其他条件不变,可以计算出AB的长吗?,分析:,可算出AB的长。,(2)如果已知一个四棱柱的各棱长和一条对角线的长,并且以同一顶点为端点的各棱间的夹角都相等,那么可以确定各棱之间夹角的余弦值吗?,分析:如图,设以顶点为端点的对角线长为,三条棱长分别为各棱间夹角为。,(3)如果已知一个四棱柱的各棱长都等于,并且以某一顶点为端点的各棱间的夹角都等于,那么可以确定这个四棱柱相邻两个夹角的余弦值吗?,A1,B1,C1,D1,A,B,C,D,分析:,二面角,平面角,向量的夹角,回归图形,解:如图,在平面AB1内过A1作A1EAB于点E,,E,F,在平面AC内作CFAB于F。,可以确定这个四棱柱相邻两个夹角的余弦值。,空间“夹角”问题,1.异面直线所成角,l,m,l,m,若两直线所成的角为,则,例2,解:以点C为坐标原点建立空间直角坐标系如图所示,设则:,所以:,所以与所成角的余弦值为,练习:,在长方体中,,方向向量法将二面角转化为二面角的两个面的方向向量(在二面角的面内且垂直于二面角的棱)的夹角。如图(2),设二面角的大小为其中AB,2、二面角,注意法向量的方向:同进同出,二面角等于法向量夹角的补角;一进一出,二面角等于法向量夹角,将二面角转化为二面角的两个面的法向量的夹角。如图,向量,则二面角的大小,2、二面角,若二面角的大小为,则,法向量法,例2正三棱柱中,D是AC的中点,当时,求二面角的余弦值。,故,则可设=1,则B(0,1,0),作于E,于F,则即为二面角的大小,在中,即E分有向线段的比为,由于且,所以,在中,同理可求,即二面角的余弦值为,解法二:同法一,以C为原点建立空间直角坐标系C-xyz,在坐标平面yoz中,设面的一个法向量为,同法一,可求B(0,1,0),由得,解得,所以,可取,即二面角的余弦值为,方向朝面外,方向朝面内,属于“一进一出”的情况,二面角等于法向量夹角,1.已知正方体的边长为2,O为AC和BD的交点,M
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江事业单位笔试真题2025
- 聊城事业单位笔试真题2025
- 2024年新疆第二医学院招聘事业单位工作人员笔试真题
- 主题4 战略性矿产资源-石油教学设计-2025-2026学年高中地理选择性必修3中图中华地图版
- 2024-2025学年高中化学 第三章 第四节 离子晶体说课稿 新人教版选修3
- 九年级化学下册 第九单元 溶液 实验活动5 一定溶质质量分数的氯化钠溶液的配制说课稿 (新版)新人教版
- 油墨厂高岭土验收规章
- 企业员工保密合同协议
- 股权转让合同
- 第三节 撒哈拉以南非洲说课稿-2025-2026学年初中地理鲁教版五四学制六年级下册-鲁教版五四学制2012
- 四级单词完整版excel
- 电缆沟及盖板作业指导书培训课件
- GB/T 19867.6-2016激光-电弧复合焊接工艺规程
- GB/T 19478-2018畜禽屠宰操作规程鸡
- 三级教育考试卷(焊工)答案
- 无生上课课堂教学评价标准
- 深圳低压电工作业-实际操作培训课件-科目四-作业现场应急处理
- 中控岗位培训课件
- 宾馆酒店前台责任书
- 2.2 第2课时 基本不等式的综合应用(课件)高一数学(人教A版2019必修第一册)
- 勿忘国耻教学课件
评论
0/150
提交评论