




已阅读5页,还剩31页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,请准备好你的数学课本、笔记本以及学习用具等。,一般地,抛物线y=a(x-h)+k与y=ax的相同,不同,2,2,形状,位置,y=ax,2,y=a(x-h)+k,2,上加下减,左加右减,知识回顾:,抛物线y=a(x-h)2+k有如下特点:,1.当a0时,开口,当a0时,开口,,向上,向下,2.对称轴是;,3.顶点坐标是。,直线X=h,(h,k),知识回顾:,直线x=3,直线x=1,向上,向下,(3,5),(1,2),知识回顾:,如何画出的图象呢?,我们知道,像y=a(x-h)2+k这样的函数,容易确定相应抛物线的顶点为(h,k),二次函数也能化成这样的形式吗?,创设情境,导入新课:,22.1.4二次函数y=ax2+bx+c图象和性质,义务教育课程标准实验教科书,九年级上册,学习目标,1、会用公式法和配方法求二次函数一般式yax2bxc的顶点坐标、对称轴;,2、熟记二次函数yax2bxc的顶点坐标公式;,3、会画二次函数一般式yax2bxc的图象。,怎样把函数转化成y=a(x-h)2+k的形式?,函数y=ax+bx+c的图象,用配方法。,探究新知:,配方,y=(x6)+3,2,1,2,你知道是怎样配方的吗?,(1)“提”:提出二次项系数;,(2)“配”:括号内配成完全平方;,(3)“化”:化成顶点式。,老师提示:配方后的表达式通常称为配方式或顶点式,探究新知:,直接画函数的图象,提取二次项系数,配方,整理,化简:去掉中括号,解:,根据顶点式确定开口方向,对称轴,顶点坐标.,列表:利用图像的对称性,选取适当值列表计算.,a=0,开口向上;对称轴:直线x=6;顶点坐标:(6,3).,直接画函数的图象,直接画函数的图象,描点、连线,画出函数图像.,(6,3),问题:1.看图像说说抛物线的增减性。2.怎样平移抛物线可以得到抛物线?,二次函数y=x6x+21图象的画法:,(1)“化”:化成顶点式;,(2)“定”:确定开口方向、对称轴、顶点坐标;,(3)“画”:列表、描点、连线。,2,1,2,归纳:,求次函数y=ax+bx+c的对称轴和顶点坐标,函数y=ax+bx+c的顶点是,配方:,提取二次项系数,配方:加上再减去一次项系数绝对值一半的平方,整理:前三项化为平方形式,后两项合并同类项,化简:去掉中括号,问题:,归纳总结:,一般地,我们可以用配方法将配方成,由此可见函数的图像与函数的图像的形状、开口方向均相同,只是位置不同,可以通过平移得到。,1二次函数(a0)的图象是一条;,2对称轴是直线顶点坐标是(),抛物线,x=,26.1.3.1二次函数的图像,人教版九年级下册第26章二次函数,这个结果通常称顶点坐标公式.,二次函数y=ax2+bx+c(a0)的图象和性质,.顶点坐标与对称轴,.位置与开口方向,.增减性与最值,抛物线,顶点坐标,对称轴,位置,开口方向,增减性,最值,y=ax2+bx+c(a0),y=ax2+bx+c(a0抛物线开口向上,解:a=10,a0B.0,5.若把抛物线y=x2-2x+1向右平移2个单位,再向下平移3个单位,得抛物线y=x2+bx+c,则()A.b=2c=6B.b=-6,c=6C.b=-8c=6D.b=-8,c=18,B,B,课堂练习,6.若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx-3的大致图象是(),7.在同一直角坐标系中,二次函数y=ax2+bx+c与一次函数y=ax+c的大致图象可能是(),C,C,课堂练习,二次函数y=ax2+bx+c(a0)的图象和性质,.顶点坐标与对称轴,.位置与开口方向,.增减性与最值,抛物线,顶点坐标,对称轴,位置,开口方向,增减性,最值,y=ax2+bx+c(a0),y=ax2+bx+c(a0时,开口向上,在对称轴左侧,y都随x的增大而减小,在对称轴右
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司废品回收管理制度
- 医保规范使用管理制度
- 公司食堂后期管理制度
- 工地食堂卫生管理制度
- 党校项目资金管理制度
- 外包工厂设备管理制度
- 口腔种植中心管理制度
- 医院处方调配管理制度
- 公司备用公章管理制度
- 培训基地大堂管理制度
- 建筑项目部考勤管理制度
- 中班健康课件《我不挑食》
- 2024年危险品二手车收购协议书范文
- 中国盐业集团有限公司招聘笔试题库2024
- 2022年江苏省江阴市四校高一物理第二学期期末经典试题含解析
- 重庆市渝北区2024年小升初英语试卷( 含笔试解析无听力原文无音频)
- 部编版八年级下册语文期末复习:字音字形 专项练习题含答案
- 东北三省精准教学2024-2025学年高三上学期9月联考化学试卷
- 运动是良医智慧树知到答案2024年成都师范学院
- 武进经济发展集团笔试
- ISO56002-2019创新管理体系管理手册及程序文件
评论
0/150
提交评论