




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,18.2正比例函数,第五师89团中学梁桂,学习目标,1.能通过具体的问题情境,归纳出正比例函数的概念。2.会利用正比例函数的一般表达式解决简单的数学问题。,问题:1996年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环;大约128天后,人们在25600千米外的澳大利亚发现了它。,情境引入,(1)这只百余克重的小鸟大约平均每天飞行多少千米?,(2)这只燕鸥的行程y(单位:千米)与飞行的时间(单位:天)之间有什么关系?,(3)这只燕鸥飞行1个半月(一个月按30天计算)的行程大约是多少千米?,解:25600128=200(km),解:y=200 x(0x128),解:当x=45时,y=20045=9000(千米),下列问题中的变量对应规律可用怎样的函数表示?这些函数的解析式有什么共同特征?,(1)圆的周长L随半径r大小变化而变化;,L=2r,m=7.8V,(2)铁的密度为7.8g/,铁块的质量m(单位g)随它的体积V(单位)大小变化而变化;,(3)每个练习本的厚度为0.5cm,一些练习本撂在一起的总厚度h(单位cm)随这些练习本的本数n的变化而变化;,(4)冷冻一个0物体,使它每分钟下降2,物体的温度T(单位:)随冷冻时间t(单位:分钟)的变化而变化。,h=0.5n,T=-2t,想一想,观察与发现,认真观察以上出现的四个函数解析式,分别说出哪些是常数、自变量和函数,这些函数的解析式有什么共同特征?,这些函数都是常数与自变量的乘积的形式!,2,r,l,7.8,V,m,0.5,n,h,2,t,T,新知探究,一般地,形如y=kx(k是常数,k0)的函数,叫做正比例函数,其中k叫做比例系数,正比例函数的概念,1.下列式子,哪些表示y是x的正比例函数?如果是,请你指出正比例系数k的值(1)y=-0.1x(2)(3)y=2x2(4)y2=4x(5)y=-4x+3(6)y=2(xx2)+2x2,是正比例函数,正比例系数为-0.1,是正比例函数,正比例系数为,不是正比例函数,不是函数,不是正比例函数,是正比例函数,正比例系数为2,判定一个函数是否是正比例函数,要从化简后来判断!,概念辨析,不是正比例函数,理解概念,呢?,概念辨析,2.判断下列各题中所指的两个量是否成正比例.(是在括号内打“”,不是在括号内打“”),(1)圆周长C与半径r()(2)圆面积S与半径r()(3)在匀速运动中的路程S与时间t(),S=vt,3.下列说法正确的打“”,错误的打“”(1)若y=kx,则y是x的正比例函数()(2)若y=2x2,则y是x的正比例函数()(3)若y=3(x-1)+3,则y是x的正比例函数()(4)若y=7(x-1),则y是x-1的正比例函数(),概念辨析,1.如果y=(k-1)x,是y关于x的正比例函数,则k满足_.2.如果y=kxk-1,是y关于x的正比例函数,则k=_.3.如果y=3x+k+4,是y关于x的正比例函数,则k=_.4.如果,是y关于x的正比例函数,则k=_.,k1,2,-4,理解概念,-3,例已知y与x成正比例,当x=4时,y=8,试求y与x的函数解析式.,解:,y与x成正比例,设y=kx(k0),又当x=4时,y=8,8=4k,k=2,y与x的函数解析式为:y=2x,例已知y与x成正比例,当x=4时,y=8,试求y与x的函数解析式.,解:,y与x成正比例,设y=kx(k0),又当x=4时,y=8,8=4k,k=2,y与x的函数解析式为:y=2x,已知y与x成正比例函数,当x=2时,y=10,则y与x的解析式是_.,若一个正比例函数的比例系数是4,则它的解析式是_.,y=5x,y=4x,已知y与x1成正比例,x=8时,y=6,写出y与x之间函数关系式,并分别求出x=4和x=-3时y的值。,解:y与x1成正比例y=k(x-1)当x=8时,y=67k=6y与x之间函数关系式是:,当x=4时,当x=-3时,拓广探索,已知y与x+2成正比例,当x=4时,y=12,那么当x=5时,y=_.,解:,y与x+2成正比例,y=k(x+2),当x=4时,y=12,12=k(4+2),解得:k=2,y=2x+4,当x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年宿州市中医医院招聘卫生专业技术人员36人模拟试卷及答案详解(典优)
- 呼啸山庄读书心得体会7篇
- 2025年城市污水处理厂智能化升级改造项目实施方案与效果评估报告
- 2025年新零售技术无人超市市场前景与挑战分析报告
- 2025年新能源汽车产业链上下游协同制造技术布局报告
- 2025年工业厂房装配式建筑设计与施工协调报告
- 2025年甘肃酒泉玉门市招聘村级后备干部模拟试卷及答案详解1套
- 2025年甘肃省嘉峪关开放大学招聘公益性岗位人员模拟试卷(含答案详解)
- 宾客关系主任(GRO)教学设计中职专业课-前厅服务与管理-旅游类-旅游大类
- 2025年甘肃省白银有色集团股份有限公司技能操作人员社会招聘552人笔试历年参考题库附带答案详解
- GB/T 21073-2007环氧涂层七丝预应力钢绞线
- GB/T 17980.37-2000农药田间药效试验准则(一)杀线虫剂防治胞囊线虫病
- 压力管道特性表
- 高级会计师评审个人业绩报告(精选9篇)
- 血管活性药物(ICU)课件
- “手电筒”模型-高考数学解题方法
- 储能型虚拟电厂的建设与思考分析报告
- 楼地面装饰构造(史上最全面)
- 海关AEO管理体系高级认证企业名录
- TTAF 068-2020 移动智能终端及应用软件用户个人信息保护实施指南 第8部分:隐私政策
- DB32∕T 4065-2021 建筑幕墙工程技术标准
评论
0/150
提交评论