




已阅读5页,还剩33页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第7节抛物线,最新考纲1.了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用;2.掌握抛物线的定义、几何图形、标准方程及简单几何性质.,1.抛物线的定义(1)平面内与一个定点F和一条定直线l(Fl)的距离_的点的轨迹叫做抛物线.定点F叫做抛物线的焦点,定直线l叫做抛物线的_.(2)其数学表达式:M|MF|d(d为点M到准线l的距离).,知识梳理,相等,准线,2.抛物线的标准方程与几何性质,诊断自测,答案(1)(2)(3)(4),2.以x1为准线的抛物线的标准方程为()A.y22xB.y22xC.y24xD.y24x,答案D,3.(2018黄冈联考)已知方程y24x表示抛物线,且该抛物线的焦点到直线xm的距离为4,则m的值为()A.5B.3或5C.2或6D.6解析抛物线y24x的焦点为F(1,0),它与直线xm的距离为d|m1|4,m3或5,故选B.答案B,4.(教材习题改编)已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P(2,4),则该抛物线的标准方程为_.,解析很明显点P在第三象限,所以抛物线的焦点可能在x轴负半轴上或y轴负半轴上.当焦点在x轴负半轴上时,设方程为y22px(p0),把点P(2,4)的坐标代入得(4)22p(2),,解得p4,此时抛物线的标准方程为y28x;,答案y28x或x2y,5.已知抛物线方程为y28x,若过点Q(2,0)的直线l与抛物线有公共点,则直线l的斜率的取值范围是_.解析设直线l的方程为yk(x2),代入抛物线方程,消去y整理得k2x2(4k28)x4k20,当k0时,显然满足题意;当k0时,(4k28)24k24k264(1k2)0,解得1k0或0k1,因此k的取值范围是1,1.答案1,1,答案(1)C(2)(2,2),【训练1】(1)动圆过点(1,0),且与直线x1相切,则动圆的圆心的轨迹方程为_.(2)(2017全国卷)已知F是抛物线C:y28x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|_.,解析(1)设动圆的圆心坐标为(x,y),则圆心到点(1,0)的距离与到直线x1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y24x.(2)如图,不妨设点M位于第一象限内,抛物线C的准线交x轴于点A,过点M作准线的垂线,垂足为点B,交y轴于点P,PMOF.由题意知,F(2,0),|FO|AO|2.,又|BP|AO|2,|MB|MP|BP|3.由抛物线的定义知|MF|MB|3,故|FN|2|MF|6.答案(1)y24x(2)6,答案(1)D(2)B,规律方法1.求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.2.在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.,【训练2】(1)如图,过抛物线y22px(p0)的焦点F的直线交抛物线于点A,B,交其准线l于点C,若|BC|2|BF|,且|AF|3,则此抛物线的方程为_.,(2)过抛物线y24x的焦点F的直线交该抛物线于A,B两点,O为坐标原点.若|AF|3,则AOB的面积为_.,规律方法1.直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.2.有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点,可直接使用公式|AB|x1x2p,若不过焦点,则必须用一般弦长公式.3.涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”、“整体代入”等解法.提醒:涉及弦的中点、斜率时一般用“点差法”求解.,【训练3】(2017全国卷)已知F为抛物线C:y24x的焦
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国创新药研发趋势及国际合作模式与投资风险评估报告
- 2025至2030咖啡伴侣行业产业运行态势及投资规划深度研究报告
- 国际投标书5篇
- 2025至2030铝合金汽车零部件行业发展趋势分析与未来投资战略咨询研究报告
- 第六章 质量与密度 单元测试卷 (含答案)2025-2026学年人教版(2024)八年级物理上册
- 塔里木油田分公司高校毕业生招聘考试真题2024
- 2025年上海市测绘院公开招聘高层次专业技术人员模拟试卷及1套参考答案详解
- 2025年海洋能源利用:海水淡化反渗透膜技术创新在海洋波浪能中的应用
- 2025北京海关所属事业单位招聘5人模拟试卷及答案详解一套
- 2025广东清远市连州市教育局招聘高中教师10人(编制)模拟试卷及答案详解(各地真题)
- 2025河北水发节水有限公司公开招聘工作人员16人笔试参考题库附答案解析
- 新版中华民族共同体概论课件第十二讲民族危亡与中华民族意识觉醒(1840-1919)-2025年版
- 2025-2026学年人教版(2024)九年级物理全册第十四章 内能的利用(单元同步检测练习)(含答案)
- 第1课时 10的加、减法(教学设计)-2024-2025学年一年级上册数学人教版
- 2025至2030中国聚烯烃行业项目调研及市场前景预测评估报告
- 夜间红外成像算法优化-洞察及研究
- 2025四川达州宣汉县国有资产管理服务中心县属国有企业招聘劳动合同职工26人笔试历年参考题库附带答案详解
- 外国戏剧史课件
- (正式版)DB15∕T 4179-2025 《输氢管道工程施工规范》
- 新教科版小学1-6年级科学需做实验目录
- WS/T 102-1998临床检验项目分类与代码
评论
0/150
提交评论