




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数列一、数列的概念(1)数列定义:按 叫做数列;数列中的每个数都叫这个数列的项。记作,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,序号为 的项叫第项(也叫通项)记作 ;数列的一般形式:,简记作 。(2)通项公式的定义:如果数列的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。二、等差数列题型一、等差数列定义:一般地,如果一个数列从第项起, ,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母表示。用递推公式表示为 或 。例:等差数列, 题型二、等差数列的通项公式:;说明:等差数列(通常可称为数列)的单调性:为递增数列,为常数列, 为递减数列。例:1.已知等差数列中,等于( )A15 B30 C31 D642.是首项,公差的等差数列,如果,则序号等于(A)667 (B)668 (C)669 (D)670 3.等差数列,则为 为 (填“递增数列”或“递减数列”)题型三、等差中项的概念:定义:如果,成等差数列,那么叫做与的等差中项。其中 ,成等差数列 即: ()例:1设是公差为正数的等差数列,若,则 ( )A B C D2.设数列是单调递增的等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A1 B.2 C.4 D.8题型四、等差数列的性质:(1)在等差数列中,从第2项起,每一项是它相邻二项的等差中项;(2)在等差数列中,相隔等距离的项组成的数列是等差数列; (3)在等差数列中,对任意,;(4)在等差数列中,若,且,则;题型五、等差数列的前和的求和公式:。(是等差数列 )递推公式:例:1.如果等差数列中,那么(A)14 (B)21 (C)28 (D)352.设是等差数列的前n项和,已知,则等于( )A13 B35 C49 D 63 3.已知数列是等差数列,其前10项的和,则其公差等于( ) C. D.4.在等差数列中,则的值为( )(A)5 (B)6 (C)8 (D)105.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )A.13项B.12项C.11项D.10项6.已知等差数列的前项和为,若 7.设等差数列的前项和为,若则 8. 设等差数列的前项和为,若,则= 9.设等差数列的前n项和为,若,则 10已知数列bn是等差数列,b1=1,b1+b2+b10=100.,则bn= 11设an为等差数列,Sn为数列an的前n项和,已知S77,S1575,Tn为数列的前n项和,求Tn。12.等差数列的前项和记为,已知求通项;若=242,求13.在等差数列中,(1)已知;(2)已知;(3)已知题型六.对于一个等差数列:(1)若项数为偶数,设共有项,则偶奇; ;(2)若项数为奇数,设共有项,则奇偶;。 题型七.对与一个等差数列,仍成等差数列。例:1.等差数列an的前m项和为30,前2m项和为100,则它的前3m项和为( )A.130 B.170 C.210 D.2602.一个等差数列前项的和为48,前2项的和为60,则前3项的和为 。3已知等差数列的前10项和为100,前100项和为10,则前110项和为 4.设为等差数列的前项和,= 5设Sn是等差数列an的前n项和,若,则A B C D题型八判断或证明一个数列是等差数列的方法:定义法:是等差数列中项法:是等差数列通项公式法:是等差数列前项和公式法:是等差数列例:1.已知数列满足,则数列为 ( )A.等差数列 B.等比数列 C.既不是等差数列也不是等比数列 D.无法判断 2.已知数列的通项为,则数列为 ( )A.等差数列 B.等比数列 C.既不是等差数列也不是等比数列 D.无法判断3.已知一个数列的前n项和,则数列为( )A.等差数列 B.等比数列 C.既不是等差数列也不是等比数列 D.无法判断4.已知一个数列的前n项和,则数列为( )A.等差数列 B.等比数列 C.既不是等差数列也不是等比数列 D.无法判断5.已知一个数列满足,则数列为( )A.等差数列 B.等比数列 C.既不是等差数列也不是等比数列 D.无法判断6设Sn是数列an的前n项和,且Sn=n2,则an是( )A.等比数列,但不是等差数列 B.等差数列,但不是等比数列C.等差数列,而且也是等比数列 D.既非等比数列又非等差数列7.数列满足=8, () 求数列的通项公式;题型九.数列最值(1),时,有最大值;,时,有最小值;(2)最值的求法:若已知,的最值可求二次函数的最值;可用二次函数最值的求法();或者求出中的正、负分界项,即:若已知,则最值时的值()可如下确定或。1.设an(nN*)是等差数列,Sn是其前n项的和,且S5S6,S6S7S8,则下列结论错误的是( )A.d0 B.a70 C.S9S5 D.S6与S7均为Sn的最大值2等差数列中,则前 项的和最大。3已知数列的通项(),则数列的前30项中最大项和最小项分别是 4设等差数列的前项和为,已知 求出公差的范围, 指出中哪一个值最大,并说明理由。5.已知是等差数列,其中,公差。(1)数列从哪一项开始小于0?(2)求数列前项和的最大值,并求出对应的值6.已知是各项不为零的等差数列,其中,公差,若,求数列前项和的最大值7.在等差数列中,求的最大值题型十.利用求通项1.设数列的前n项和,则的值为( )(A) 15 (B) 16 (C) 49 (D)642已知数列的前项和则 3.数列的前项和(1)试写出数列的前5项;(2)数列是等差数列吗?(3)你能写出数列的通项公式吗?4.已知数列中,前和求证:数列是等差数列求数列的通项公式三、等比数列等比数列定义一般地,如果一个数列从 ,每一项与它的前一项的比等于同一个 ,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比;公比通常用字母表示,即: 题型一、递推关系与通项公式1.等比数列an中,a264,a18,则公比q为( )(A)2(B)3(C)4(D)82.在各项都为正数的等比数列中,首项,前三项和为21,则( )A 33 B 72 C 84 D 1893.在等比数列中,,则 4.在等比数列中,则 5.在等比数列中,则= 题型二、等比中项:若三个数成等比数列,则称为的等比中项,且为是成等比数列的必要而不充分条件.1.和的等比中项为( ) 2.设是公差不为0的等差数列,且成等比数列,则的前项和=( ) A B CD题型三、等比数列的基本性质,1.(1)(2)(3)为等比数列,则下标成等差数列的对应项成等比数列.(4)既是等差数列又是等比数列是各项不为零的常数列.1在等比数列中,和是方程的两个根,则( ) 2.等比数列的各项为正数,且( ) A12 B10 C8 D2+3.已知等比数列满足,且,则当时,( ) A. B. C. D. 4. 在等比数列,已知,则= 5.在等比数列中,求 若题型四、等比数列的前n项和,例:1设,则等于( )AB C D2.已知等比数列的首相,公比,则其前n项和 3.已知等比数列的首相,公比,当项数n趋近与无穷大时,其前n项和 4设等比数列的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,则q的值为 .5.设等比数列的前n项和为,已,求和6设等比数列an的前n项和为Sn,若S3S62S9,求数列的公比q;题型五. 等比数列的前n项和的性质若数列是等比数列,是其前n项的和,那么,成等比数列.1设等比数列 的前n 项和为,若 =3 ,则 =( ) A. 2 B. C. D.32.一个等比数列前项的和为48,前2项的和为60,则前3项的和为( )A83 B108 C75 D633.已知数列是等比数列,且 题型六、等比数列的判定法(1)定义法:为等比数列;(2)中项法:为等比数列; (3)通项公式法:为等比数列; (4)前项和法:为等比数列。 为等比数列。例:1.已知数列的通项为,则数列为 ( )A.等差数列 B.等比数列 C.既不是等差数列也不是等比数列 D.无法判断2.已知数列满足,则数列为 ( )A.等差数列 B.等比数列 C.既不是等差数列也不是等比数列 D.无法判断3.已知一个数列的前n项和,则数列为( )A.等差数列 B.等比数列 C.既不是等差数列也不是等比数列 D.无法判断题型七、利用求通项例:1.数列an的前n项和为Sn,且a1=1,n=1,2,3,求a2,a3,a4的值及数列an的通项公式 2.已知数列的首项前项和为,且,证明数列是等比数列指数函数与对数函数1.指数(1)n次方根的定义:若,则称x为a的n次方根,“”是方根的记号。在实数范围内,正数的奇次方根是一个正数,负数的奇次方根是一个负数,0的奇次方根是0;正数的偶次方根是两个绝对值相等符号相反的数,0的偶次方根是0,负数没有偶次方根。(2)方根的性质:当是奇数时,;当是偶数时,(3)分数指数幂的意义:,(4)实数指数幂的运算性质: 2.对数(1)对数的定义:一般地,如果,那么数叫做以为底的对数,记作:( 底数, 真数, 对数式)常用对数:以10为底的对数_;自然对数:以无理数为底的对数_(2)指数式与对数式的关系:(,且,)(3)对数的运算性质:如果,且,那么:_ _;_;_注意:换底公式(,且;,且;)(4)几个小结论:;(5)对数的性质:负数没有对数;.3.指数函数及其性质(1)指数函数的概念:一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 药品物品设备管理制度
- 药品销售人员管理制度
- 药店仓库盘存管理制度
- 药店店员薪酬管理制度
- 药店营业区域管理制度
- 薪资待遇具体管理制度
- 设备包机责任管理制度
- 设备巡回检查管理制度
- 设备日常养护管理制度
- 设备现场图文管理制度
- 2024年湖南省公安厅招聘警务辅助人员笔试真题
- 弘扬中国精神的课件
- 2025年高考英语全国二卷试题含答案
- 2025江苏扬州宝应县“乡村振兴青年人才”招聘67人笔试备考题库及完整答案详解一套
- 云南省玉溪市2023-2024学年高二下学期期末教学质量检测语文试卷(含答案)
- 抚州市乐安县招聘城市社区工作者笔试真题2024
- 仪器仪表制造职业技能竞赛理论题库
- 网络服务器配置与管理(微课版) 教案 项目02 虚拟化技术和VMware-2
- 税收分析试题及答案
- 2025年西式面点师(中级)面包烘焙实操考试试卷
- 国家开放大学2025年《创业基础》形考任务3答案
评论
0/150
提交评论