




已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三节无穷小量与无穷大量,2.3.1无穷小量,1.定义1设f(x)在某U(x0)内有定义.若则称f(x)为当xx0时的无穷小量.,例如:,(2)无穷小量与极限过程分不开,不能脱离极限过程谈无穷小量.,如sinx是x0时的无穷小量,但,注,(1)无穷小量是变量,不能与很小的数混淆;,(3)关于有界量.,2.无穷小量的运算性质,时,有,定理1.有限个无穷小的和还是无穷小.,证:考虑两个无穷小的和.,设,当,时,有,当,时,有,取,则当,因此,这说明当,时,为无穷小量.,定理2.有界函数与无穷小的乘积是无穷小.,证:设,又设,即,当,时,有,取,则当,时,就有,故,即,是,时的无穷小.,推论1.常数与无穷小的乘积是无穷小.,推论2.有限个无穷小的乘积是无穷小.,其中为,时的无穷小量.,定理2.3.1.(无穷小与函数极限的关系),证:,当,时,有,对自变量的其它变化过程类似可证.,2.3.2、无穷大,定义2.若任给M0,一切满足不等式,的x,总有,则称函数,当,时为无穷大,使对,若在定义中将式改为,则记作,(正数X),记作,总存在,概念:在某个变化过程中,绝对值无限增大的函数,称为在此变化过程中的无穷大量.(非正常极限).,注意:,1.无穷大不是很大的数,它是描述函数的一种状态.,2.函数为无穷大,必定无界.但反之不真!,例如,函数,当,但,不是无穷大!,例.证明,证:任给正数M,要使,即,只要取,则对满足,的一切x,有,所以,若,则直线,为曲线,的铅直渐近线.,渐近线,说明:,无穷小与无穷大的关系,若,为无穷大,为无穷小;,若,为无穷小,且,则,为无穷大.,则,定理2.3.2在自变量的同一变化过程中,2.3.3无穷小量阶的比较,都是无穷小,引例.,但,可见无穷小趋于0的速度是多样的.,若,则称是比高阶的无穷小,若,若,若,若,或,记作,则称是比低阶的无穷小;,则称是的同阶无穷小;,则称是关于的k阶无穷小;,则称是的等价无穷小,记作,定义2.3.3,例如,当,时,又如,,故,时,是关于x的二阶无穷小,且,例1.证明:当,时,证:,命题2.3.2,证:,即,即,例如,故,命题2.3.3设,且,存在,则,证:,例如,无穷小量的等价替换定理,求两个无穷小量比值的极限时,分子及分母都可用等价无穷小量来代替因此,如果用来代替的无穷小量选取得适当,则可使计算简化,定理3.12的意义:,常用等价无穷小:,无穷小量的等价替换定理的几何意义,解当x0时tan2x2xsin5x5x所以,说明只有对所求极限式相乘或相除的因式才能用等价无穷小量来替代
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 儿科专家临床疾病诊疗要点
- T/SXGX 001-2020煤化工及热电行业用彩色涂层钢板及钢带
- 公园景观设计原理
- 中国画毕业设计创作与展示
- 2025年助溶剂项目提案报告
- 2025年群路密码机系列项目规划申请报告
- 2025【合同协议】室内墙面漆施工合同
- 工业机器人维护的数字孪生策略
- 太原初一生物试卷及答案
- 宿城一中考试试卷及答案
- 【9语二模】2025年安徽合肥市第四十五中学中考二模语文试卷
- 中国文化概论知识试题及答案
- 烟台购房协议书
- 2025年中考生物模拟测试卷及答案
- 中国经导管主动脉瓣置换术临床路径专家共识(2024版)解读
- 《无脊椎动物的演化》课件
- 全域旅游视角下浙江白水洋镇乡村旅游发展路径优化研究
- 2025呼伦贝尔农垦集团有限公司校园招聘44人笔试参考题库附带答案详解
- 2025-2030中国TPV行业市场现状供需分析及投资评估规划分析研究报告
- 高等数学-第十二章-无穷级数
- 邮政寄递安全培训
评论
0/150
提交评论