




已阅读5页,还剩23页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.2016年高考数学中难题一选择题(共9小题)1(2016新课标)已知函数f(x)(xR)满足f(x)=2f(x),若函数y=与y=f(x)图象的交点为(x1,y1),(x2,y2),(xm,ym),则(xi+yi)=()A0BmC2mD4m2(2016新课标)已知F1,F2是双曲线E:=1的左,右焦点,点M在E上,MF1与x轴垂直,sinMF2F1=,则E的离心率为()ABCD23(2016新课标)在封闭的直三棱柱ABCA1B1C1内有一个体积为V的球,若ABBC,AB=6,BC=8,AA1=3,则V的最大值是()A4BC6D4(2016新课标)已知O为坐标原点,F是椭圆C:+=1(ab0)的左焦点,A,B分别为C的左,右顶点P为C上一点,且PFx轴,过点A的直线l与线段PF交于点M,与y轴交于点E若直线BM经过OE的中点,则C的离心率为()ABCD5(2016新课标)定义“规范01数列”an如下:an共有2m项,其中m项为0,m项为1,且对任意k2m,a1,a2,ak中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有()A18个B16个C14个D12个6(2016浙江)如图,点列An、Bn分别在某锐角的两边上,且|AnAn+1|=|An+1An+2|,AnAn+1,nN*,|BnBn+1|=|Bn+1Bn+2|,BnBn+1,nN*,(PQ表示点P与Q不重合)若dn=|AnBn|,Sn为AnBnBn+1的面积,则()ASn是等差数列BSn2是等差数列Cdn是等差数列Ddn2是等差数列7(2016浙江)已知实数a,b,c()A若|a2+b+c|+|a+b2+c|1,则a2+b2+c2100B若|a2+b+c|+|a2+bc|1,则a2+b2+c2100C若|a+b+c2|+|a+bc2|1,则a2+b2+c2100D若|a2+b+c|+|a+b2c|1,则a2+b2+c21008(2016四川)设直线l1,l2分别是函数f(x)=图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于点A,B,则PAB的面积的取值范围是()A(0,1)B(0,2)C(0,+)D(1,+)9(2016四川)在平面内,定点A,B,C,D满足=,=2,动点P,M满足=1,=,则|2的最大值是()ABCD二填空题(共21小题)10(2016新课标)设等比数列an满足a1+a3=10,a2+a4=5,则a1a2an的最大值为 11(2016新课标)某高科技企业生产产品A和产品B需要甲、乙两种新型材料生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为 元12(2016新课标)若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,则b= 13(2016新课标)已知f(x)为偶函数,当x0时,f(x)=ln(x)+3x,则曲线y=f(x)在点(1,3)处的切线方程是 14(2016新课标)已知直线l:mx+y+3m=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|= 15(2016浙江)如图,在ABC中,AB=BC=2,ABC=120若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是 16(2016浙江)已知向量,|=1,|=2,若对任意单位向量,均有|+|,则的最大值是 17(2016浙江)设数列an的前n项和为Sn,若S2=4,an+1=2Sn+1,nN*,则a1= ,S5= 18(2016山东)已知函数f(x)=,其中m0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是 19(2016北京)双曲线=1(a0,b0)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点若正方形OABC的边长为2,则a= 20(2016北京)设函数f(x)=若a=0,则f(x)的最大值为 ;若f(x)无最大值,则实数a的取值范围是 21(2016四川)若函数f(x)是定义R上的周期为2的奇函数,当0x1时,f(x)=4x,则f()+f(2)= 22(2016上海)方程3sinx=1+cos2x在区间0,2上的解为 23(2016上海)已知点(3,9)在函数f(x)=1+ax的图象上,则f(x)的反函数f1(x)= 24(2016上海)在正四棱柱ABCDA1B1C1D1中,底面ABCD的边长为3,BD1与底面所成角的大小为arctan,则该正四棱柱的高等于 25(2016上海)设a0,b0,若关于x,y的方程组无解,则a+b的取值范围为 26(2016江苏)定义在区间0,3上的函数y=sin2x的图象与y=cosx的图象的交点个数是 27(2016江苏)如图,在平面直角坐标系xOy中,F是椭圆+=1(ab0)的右焦点,直线y=与椭圆交于B,C两点,且BFC=90,则该椭圆的离心率是 28(2016江苏)设f(x)是定义在R上且周期为2的函数,在区间1,1)上,f(x)=,其中aR,若f()=f(),则f(5a)的值是 29(2016江苏)已知实数x,y满足,则x2+y2的取值范围是 30(2016江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是 2016年高考数学中难题参考答案与试题解析一选择题(共9小题)1(2016新课标)已知函数f(x)(xR)满足f(x)=2f(x),若函数y=与y=f(x)图象的交点为(x1,y1),(x2,y2),(xm,ym),则(xi+yi)=()A0BmC2mD4m【解答】解:函数f(x)(xR)满足f(x)=2f(x),即为f(x)+f(x)=2,可得f(x)关于点(0,1)对称,函数y=,即y=1+的图象关于点(0,1)对称,即有(x1,y1)为交点,即有(x1,2y1)也为交点,(x2,y2)为交点,即有(x2,2y2)也为交点,则有(xi+yi)=(x1+y1)+(x2+y2)+(xm+ym)=(x1+y1)+(x1+2y1)+(x2+y2)+(x2+2y2)+(xm+ym)+(xm+2ym)=m故选:B2(2016新课标)已知F1,F2是双曲线E:=1的左,右焦点,点M在E上,MF1与x轴垂直,sinMF2F1=,则E的离心率为()ABCD2【解答】解:由题意,M为双曲线左支上的点,则丨MF1丨=,丨MF2丨=,sinMF2F1=,=,可得:2b4=a2c2,即b2=ac,又c2=a2+b2,可得e2e=0,e1,解得e=故选:A3(2016新课标)在封闭的直三棱柱ABCA1B1C1内有一个体积为V的球,若ABBC,AB=6,BC=8,AA1=3,则V的最大值是()A4BC6D【解答】解:ABBC,AB=6,BC=8,AC=10故三角形ABC的内切圆半径r=2,又由AA1=3,故直三棱柱ABCA1B1C1的内切球半径为,此时V的最大值=,故选:B4(2016新课标)已知O为坐标原点,F是椭圆C:+=1(ab0)的左焦点,A,B分别为C的左,右顶点P为C上一点,且PFx轴,过点A的直线l与线段PF交于点M,与y轴交于点E若直线BM经过OE的中点,则C的离心率为()ABCD【解答】解:由题意可设F(c,0),A(a,0),B(a,0),设直线AE的方程为y=k(x+a),令x=c,可得M(c,k(ac),令x=0,可得E(0,ka),设OE的中点为H,可得H(0,),由B,H,M三点共线,可得kBH=kBM,即为=,化简可得=,即为a=3c,可得e=另解:由AMFAEO,可得=,由BOHBFM,可得=,即有=即a=3c,可得e=故选:A5(2016新课标)定义“规范01数列”an如下:an共有2m项,其中m项为0,m项为1,且对任意k2m,a1,a2,ak中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有()A18个B16个C14个D12个【解答】解:由题意可知,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,若m=4,说明数列有8项,满足条件的数列有:0,0,0,0,1,1,1,1; 0,0,0,1,0,1,1,1; 0,0,0,1,1,0,1,1; 0,0,0,1,1,1,0,1; 0,0,1,0,0,1,1,1;0,0,1,0,1,0,1,1; 0,0,1,0,1,1,0,1; 0,0,1,1,0,1,0,1; 0,0,1,1,0,0,1,1; 0,1,0,0,0,1,1,1;0,1,0,0,1,0,1,1; 0,1,0,0,1,1,0,1; 0,1,0,1,0,0,1,1; 0,1,0,1,0,1,0,1共14个故选:C6(2016浙江)如图,点列An、Bn分别在某锐角的两边上,且|AnAn+1|=|An+1An+2|,AnAn+1,nN*,|BnBn+1|=|Bn+1Bn+2|,BnBn+1,nN*,(PQ表示点P与Q不重合)若dn=|AnBn|,Sn为AnBnBn+1的面积,则()ASn是等差数列BSn2是等差数列Cdn是等差数列Ddn2是等差数列【解答】解:设锐角的顶点为O,|OA1|=a,|OB1|=c,|AnAn+1|=|An+1An+2|=b,|BnBn+1|=|Bn+1Bn+2|=d,由于a,c不确定,则dn不一定是等差数列,dn2不一定是等差数列,设AnBnBn+1的底边BnBn+1上的高为hn,由三角形的相似可得=,=,两式相加可得,=2,即有hn+hn+2=2hn+1,由Sn=dhn,可得Sn+Sn+2=2Sn+1,即为Sn+2Sn+1=Sn+1Sn,则数列Sn为等差数列另解:可设A1B1B2,A2B2B3,AnBnBn+1为直角三角形,且A1B1,A2B2,AnBn为直角边,即有hn+hn+2=2hn+1,由Sn=dhn,可得Sn+Sn+2=2Sn+1,即为Sn+2Sn+1=Sn+1Sn,则数列Sn为等差数列故选:A7(2016浙江)已知实数a,b,c()A若|a2+b+c|+|a+b2+c|1,则a2+b2+c2100B若|a2+b+c|+|a2+bc|1,则a2+b2+c2100C若|a+b+c2|+|a+bc2|1,则a2+b2+c2100D若|a2+b+c|+|a+b2c|1,则a2+b2+c2100【解答】解:A设a=b=10,c=110,则|a2+b+c|+|a+b2+c|=01,a2+b2+c2100;B设a=10,b=100,c=0,则|a2+b+c|+|a2+bc|=01,a2+b2+c2100;C设a=100,b=100,c=0,则|a+b+c2|+|a+bc2|=01,a2+b2+c2100;故选:D8(2016四川)设直线l1,l2分别是函数f(x)=图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于点A,B,则PAB的面积的取值范围是()A(0,1)B(0,2)C(0,+)D(1,+)【解答】解:设P1(x1,y1),P2(x2,y2)(0x11x2),当0x1时,f(x)=,当x1时,f(x)=,l1的斜率,l2的斜率,l1与l2垂直,且x2x10,即x1x2=1直线l1:,l2:取x=0分别得到A(0,1lnx1),B(0,1+lnx2),|AB|=|1lnx1(1+lnx2)|=|2(lnx1+lnx2)|=|2lnx1x2|=2联立两直线方程可得交点P的横坐标为x=,|AB|xP|=函数y=x+在(0,1)上为减函数,且0x11,则,PAB的面积的取值范围是(0,1)故选:A9(2016四川)在平面内,定点A,B,C,D满足=,=2,动点P,M满足=1,=,则|2的最大值是()ABCD【解答】解:由=,可得D为ABC的外心,又=,可得()=0,()=0,即=0,即有,可得D为ABC的垂心,则D为ABC的中心,即ABC为正三角形由=2,即有|cos120=2,解得|=2,ABC的边长为4cos30=2,以A为坐标原点,AD所在直线为x轴建立直角坐标系xOy,可得B(3,),C(3,),D(2,0),由=1,可设P(cos,sin),(02),由=,可得M为PC的中点,即有M(,),则|2=(3)2+(+)2=+=,当sin()=1,即=时,取得最大值,且为故选:B二填空题(共21小题)10(2016新课标)设等比数列an满足a1+a3=10,a2+a4=5,则a1a2an的最大值为64【解答】解:等比数列an满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q=a1+q2a1=10,解得a1=8则a1a2an=a1nq1+2+3+(n1)=8n=,当n=3或4时,表达式取得最大值:=26=64故答案为:6411(2016新课标)某高科技企业生产产品A和产品B需要甲、乙两种新型材料生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000元【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元由题意,得,z=2100x+900y不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y经过A时,直线的截距最大,目标函数取得最大值:210060+900100=216000元故答案为:21600012(2016新课标)若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,则b=1ln2【解答】解:设y=kx+b与y=lnx+2和y=ln(x+1)的切点分别为(x1,kx1+b)、(x2,kx2+b);由导数的几何意义可得k=,得x1=x2+1再由切点也在各自的曲线上,可得联立上述式子解得;从而kx1+b=lnx1+2得出b=1ln213(2016新课标)已知f(x)为偶函数,当x0时,f(x)=ln(x)+3x,则曲线y=f(x)在点(1,3)处的切线方程是2x+y+1=0【解答】解:f(x)为偶函数,可得f(x)=f(x),当x0时,f(x)=ln(x)+3x,即有x0时,f(x)=lnx3x,f(x)=3,可得f(1)=ln13=3,f(1)=13=2,则曲线y=f(x)在点(1,3)处的切线方程为y(3)=2(x1),即为2x+y+1=0故答案为:2x+y+1=014(2016新课标)已知直线l:mx+y+3m=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|=4【解答】解:由题意,|AB|=2,圆心到直线的距离d=3,=3,m=直线l的倾斜角为30,过A,B分别作l的垂线与x轴交于C,D两点,|CD|=4故答案为:415(2016浙江)如图,在ABC中,AB=BC=2,ABC=120若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是【解答】解:如图,M是AC的中点当AD=tAM=时,如图,此时高为P到BD的距离,也就是A到BD的距离,即图中AE,DM=t,由ADEBDM,可得,h=,V=,t(0,)当AD=tAM=时,如图,此时高为P到BD的距离,也就是A到BD的距离,即图中AH,DM=t,由等面积,可得,h=,V=,t(,2)综上所述,V=,t(0,2)令m=1,2),则V=,m=1时,Vmax=另解:由于PD=DA,PB=BA,则对于每一个确定的AD,都有PDB绕DB在空间中旋转,则PDAC时体积最大,则只需考察所有PDAC时的最大,设PD=DA=h,则V=S底h=hsin30(2h)2,二次函数求最值可知h=时体积最大为故答案为:16(2016浙江)已知向量,|=1,|=2,若对任意单位向量,均有|+|,则的最大值是【解答】解:由绝对值不等式得|+|+|=|(+)|,于是对任意的单位向量,均有|(+)|,|(+)|2=|2+|2+2=5+2,|(+)|=,因此|(+)|的最大值,则,下面证明:可以取得,(1)若|+|=|+|,则显然满足条件(2)若|+|=|,此时|2=|2+|22=51=4,此时|=2于是|+|=|2,符合题意,综上的最大值是,法2:由于任意单位向量,可设=,则|+|=|+|+|=|=|+|,|+|,|+|,即(+)26,即|2+|2+26,|=1,|=2,即的最大值是法三:设=,=,=,则=+,=,|+|=|+|=|,由题设当且仅当与同向时,等号成立,此时(+)2取得最大值6,由于|+|2+|)2=2(|2+|2)=10,于是()2取得最小值4,则=,的最大值是故答案为:17(2016浙江)设数列an的前n项和为Sn,若S2=4,an+1=2Sn+1,nN*,则a1=1,S5=121【解答】解:由n=1时,a1=S1,可得a2=2S1+1=2a1+1,又S2=4,即a1+a2=4,即有3a1+1=4,解得a1=1;由an+1=Sn+1Sn,可得Sn+1=3Sn+1,由S2=4,可得S3=34+1=13,S4=313+1=40,S5=340+1=121故答案为:1,12118(2016山东)已知函数f(x)=,其中m0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是(3,+)【解答】解:当m0时,函数f(x)=的图象如下:xm时,f(x)=x22mx+4m=(xm)2+4mm24mm2,y要使得关于x的方程f(x)=b有三个不同的根,必须4mm2m(m0),即m23m(m0),解得m3,m的取值范围是(3,+),故答案为:(3,+)19(2016北京)双曲线=1(a0,b0)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点若正方形OABC的边长为2,则a=2【解答】解:双曲线的渐近线为正方形OABC的边OA,OC所在的直线,渐近线互相垂直,则双曲线为等轴双曲线,即渐近线方程为y=x,即a=b,正方形OABC的边长为2,OB=2,即c=2,则a2+b2=c2=8,即2a2=8,则a2=4,a=2,故答案为:220(2016北京)设函数f(x)=若a=0,则f(x)的最大值为2;若f(x)无最大值,则实数a的取值范围是(,1)【解答】解:若a=0,则f(x)=,则f(x)=,当x1时,f(x)0,此时函数为增函数,当x1时,f(x)0,此时函数为减函数,故当x=1时,f(x)的最大值为2;f(x)=,令f(x)=0,则x=1,若f(x)无最大值,则,或,解得:a(,1)故答案为:2,(,1)21(2016四川)若函数f(x)是定义R上的周期为2的奇函数,当0x1时,f(x)=4x,则f()+f(2)=2【解答】解:函数f(x)是定义R上的周期为2的奇函数,当0x1时,f(x)=4x,f(2)=f(0)=0,f()=f(+2)=f()=f()=2,则f()+f(2)=2+0=2,故答案为:222(2016上海)方程3sinx=1+cos2x在区间0,2上的解为或【解答】解:方程3sinx=1+cos2x,可得3sinx=22sin2x,即2sin2x+3sinx2=0可得sinx=2,(舍去)sinx=,x0,2解得x=或故答案为:或23(2016上海)已知点(3,9)在函数f(x)=1+ax的图象上,则f(x)的反函数f1(x)=log2(x1)(x1)【解答】解:点(3,9)在函数f(x)=1+ax的图象上,9=1+a3,解得a=2f(x)=1+2x,由1+2x=y,解得x=log2(y1),(y1)把x与y互换可得:f(x)的反函数f1(x)=log2(x1)故答案为:log2(x1),(x1)24(2016上海)在正四棱柱ABCDA1B1C1D1中,底面ABCD的边长为3,BD1与底面所成角的大小为arctan,则该正四棱柱的高等于2【解答】解:正四棱柱ABCDA1B1C1D1的侧棱D1D底面ABCD,D1BD为直线BD1与底面ABCD所成的角,tanD1BD=,正四棱柱ABCDA1B1C1D1中,底面ABCD的边长为3,BD=3,正四棱柱的高=3=2,故答案为:225(2016上海)设a0,b0,若关于x,y的方程组无解,则a+b的取值范围为(2,+)【解答】解:关于x,y的方程组无解,直线ax+y=1与x+by=1平行,a0,b0,即a1,b1,且ab=1,则b=,由基本不等式有:a+b=a+2=2,当且仅当a=1时取等,而a的范围为a0且a1,不满足取等条件,a+b2,故答案为:(2,+)26(2016江苏)定义在区间0,3上的函数y=sin2x的图象与y=cosx的图象的交点个数是7【解答】解:法1:画出函数y=sin2x与y=cosx在区间0,3上的图象如下:由图可知,共7个交点法2:依题意,sin2x=cosx,即cosx(2sinx1)=0,故cosx=0或sinx=,因为x0,3,故x=,共7个,故答案为:727(2016江苏)如图,在平面直角坐标系xOy中,F是椭圆+=1(ab0)的右焦点,直线y=与椭圆交于B,C两点,且BFC=90,则该椭圆的离心率是【解答】解:设右焦点F(c,0),将y=代入椭圆方程可得x=a=a,可得B(a,),C(a,),由BFC=90,可得kBFkCF=1,即有=1,化简为b2=3a24c2,由b2=a2c2,即有3c2=2a2,由e=,可得e2=,可得e=,另解:设右焦点F(c,0),将y=代入椭圆方程可得x=a=a,可得B(a,),C(a,),=(ac,),=(ac,),=0,则c2a2十b2=0,因为b2=a2c2,代入得3c2=2a2,由e=,可得e2=,可得e=故答案为:28(2016江苏)设f(x)是定义在R上且周期为2的函数,在区间1,1)上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云浮市中储粮2025秋招笔试性格测评题专练及答案
- 丹东市中石油2025秋招心理测评常考题型与答题技巧
- 黄南藏族自治州中石化2025秋招面试半结构化模拟题及答案油田工程技术岗
- 国家能源兴安盟2025秋招综合管理类面试追问及参考回答
- 国家能源淄博市2025秋招面试专业追问及参考采矿工程岗位
- 2025年长城招聘考试试题及答案
- 中国广电深圳市2025秋招笔试行测题库及答案互联网运营
- 中国广电兰州市2025秋招笔试行测题库及答案市场与服务类
- 郴州市中储粮2025秋招面试专业追问题库购销统计岗
- 武威市中石油2025秋招面试半结构化模拟题及答案数智化与信息工程岗
- 2025年中国工商银行校园招聘考试题库历年考试真题及答案
- 挺身式跳远技术
- 2025年香港销售合同范本
- 2024河北工勤人员技师考试汽车驾驶员自测试题及答案-河北职业
- 国有企业财会监督体系构建的路径选择与机制创新
- 备战2026年高考语文(近三年)高考真题分类汇编专题06文言文阅读(多文本阅读)(解析版)
- GB/T 14188-2025气相防锈包装材料选用通则
- 2024镇江市高等专科学校辅导员招聘笔试真题
- 四川省中小学教育技术装备标准 (试行)
- 拆除改造工程方案
- 养老护理员的礼仪规范
评论
0/150
提交评论