




已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
画轴对称图形,欣赏图片,你能将下列图形沿一直线折叠,使两边完全重合吗?,右图是从镜中看到的一串数字,这串数字应为,.,如果在黑板上写一个字,拿一面镜子人背对黑板,你看到镜子里出现的还会是吗?,如果再在黑板上写出如下时间,那么镜子里出现的是几点?,利用轴对称变换设计美丽图案,一个轴对称图形可以看作是以它的一部分作为基础,经轴对称变换扩展而来.,对称轴的方向和位置发生变化,得到图形的方向和位置也会发生变化.,轴对称变换:由一个平面图形得到它的轴对称图形的过程.,由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样;,新图形上的每一点,都是原图形上的某一点关于直线l的对称点;,连接任意一对对应点的线段被对称轴垂直平分。,轴对称变换的特征:,一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的。,成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到。,已知对称轴l和一个点A,如何画出点A关于l的对称点A?,A,l,尝试探究,作法:过点A作直线l的垂线在垂线上截取OA=OA,垂足为点O,点A就是点A关于直线l的对称点.,如何画线段AB关于直线l的对称线段AB?,A,B,作法:1、过点A作直线l的垂线,垂足为点O,在垂线上截OA=OA,点A就是点A关于直线l的对称点;2、类似地,作出点B关于直线l的对称点B;3、连接AB.,线段AB即为所求。,1、过点A作直线l的垂线,垂足为点O,,在垂线上截取OA=OA,,例1:如图,已知ABC和直线l,作出与ABC关于直线l对称的图形。,分析:ABC可以由三个顶点的位置确定,只要能分别作出这三个顶点关于直线l的对称点,连接这些对称点,就能得到要作的图形。,l,作法:,2、类似地,分别作出点B、C关于直线l的对称点B、C;,3、连接AB、BC、CA。,ABC即为所求。,A,B,C,O,点A就是点A关于直线l的对称点;,例1:如图,已知ABC和直线l,作出与ABC关于直线l对称的图形。,l,B,C,A,B,ABC即为所求。,作法:,1、分别作出点B、C关于直线l的对称点B、C;,2、连接AB、BC、CA。,l,作法:,1、分别作出点A、B关于直线l的对称点A、B;,2、连接AB、BC、CA。,ABC即为所求。,作已知图形关于已知直线对称的图形的一般步聚:,1、找点,2、画点,3、连线,(确定图形中的一些特殊点);,(画出特殊点关于已知直线的对称点);,(连接对称点)。,请你用所学的知识来欣赏下列美丽的图案,要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?,你可以在L上找几个点试一试,能发现什么规律吗?,哈,我知道怎样作,A,B,C,1、由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样;,2、新图形上的每一点,都是原图形上的某一点关于直线l的对称点;,3、连接任意一对对应点的线段被对称轴垂直平分。,轴对称变换的特征:,作已知图形关于已知直线对称的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025院感知识新冠考试题及答案
- 招幌视觉元素在历史街区店招改造设计中的应用-以芜湖长街为例
- 光刻工风险评估水平考核试卷含答案
- 液化石油气库站工技能考核考试试卷及答案
- 2025年机器人技术应用与管理试卷及答案
- 2025事业单位工勤技能考试题库检测试题打印附参考答案详解
- 公司全员考试试题题库及答案工程试验
- 资料员考试试题专业知识与实务含答案
- 2025年全国水利安全生产知识竞赛测测试题含答案
- 期中专区(九年级上)说课稿-2023-2024学年初中物理九年级全册(2024)北师大版(2024·郭玉英)
- 《超声诊断瓣膜病》课件
- 军体拳第一套全套图文教程
- 店长周工作总结数据报表模板
- “五育并举”视域下美育对工科大学生审美能力的提升研究
- 敦煌舞智慧树知到期末考试答案章节答案2024年兰州文理学院
- 机械工程学科研究前沿
- 涉外建设项目视频安防监控系统设计规范 DG-TJ08-2054-2013
- 中医外科 第十三章泌尿男科疾病概论
- Neo4j介绍及实现原理
- 印刷厂周报告
- 《兄弟》读书笔记名著导读PPT模板
评论
0/150
提交评论