21 1参数方程的概念 课件(人教A选修4-4).ppt_第1页
21 1参数方程的概念 课件(人教A选修4-4).ppt_第2页
21 1参数方程的概念 课件(人教A选修4-4).ppt_第3页
21 1参数方程的概念 课件(人教A选修4-4).ppt_第4页
21 1参数方程的概念 课件(人教A选修4-4).ppt_第5页
已阅读5页,还剩12页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

都在这条曲线上,参数方程,参数,普通方程,2参数的意义是联系变数x,y的桥梁,可以是有意义或意义的变数,也可以是的变数,参数,物理,几何,没有明显实际意义,例1如图,ABP是等腰直角三角形,B是直角,腰长为a,顶点B、A分别在x轴、y轴上滑动,求点P在第一象限的轨迹的参数方程思路点拨此类问题关键是参数的选取本例中由于A、B的滑动而引起点P的运动,故可以OB的长为参数,或以角为参数,不妨取BP与x轴正向夹角为参数来求解,求曲线参数方程的主要步骤第一步,画出轨迹草图,设M(x,y)是轨迹上任意一点的坐标画图时要注意根据几何条件选择点的位置,以利于发现变量之间的关系,第二步,选择适当的参数参数的选择要考虑以下两点:一是曲线上每一点的坐标x,y与参数的关系比较明显,容易列出方程;二是x,y的值可以由参数唯一确定例如,在研究运动问题时,通常选时间为参数;在研究旋转问题时,通常选旋转角为参数此外,离某一定点的“有向距离”、直线的倾斜角、斜率、截距等也常常被选为参数第三步,根据已知条件、图形的几何性质、问题的物理意义等,建立点的坐标与参数的函数关系式,证明可以省略,2选取适当的参数,把直线方程y2x3化为参数方程,参数方程是曲线方程的另一种表达形式,点与曲线位置关系的判断,与平面直角坐标方程下的判断方法是一致的,3曲线(x1)2y24上的点可以表示为()A(1cos,sin)B(1sin,cos)C(12cos,2sin)D(12cos,2sin)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论