




已阅读5页,还剩66页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.,5旋轮线6旋轮线也叫摆线7旋轮线是最速降线8心形线9星形线10圆的渐伸线11笛卡儿叶形线12双纽线13阿基米德螺线14双曲螺线,主目录(125),15,16,2,3,1曲边梯形的面积,4曲边扇形的面积,.,19平行截面面积为已知的立体的体积。20半径为R的正圆柱体被通过其底的直径并与底面成角的平面所截,得一圆柱楔。求其体积。21求以半径为R的圆为底,平行且等于底圆直径的线段为顶,高为h的正劈锥体的体积。22旋转体体积(y=f(x)绕x轴)23旋转体体积(x=g(y)绕y轴)24旋转体体积(柱壳法)25旋转体的侧面积,18,17,求由双纽线,内部的面积。,.,.,元素法,1化整为零,2以直代曲(以常代变),3积零为整,y=f(x),.,.,分法越细,越接近精确值,1.曲边梯形的面积,f(i),.,.,元素法,4取极限,y=f(x),令分法无限变细,.,.,.,.,分法越细,越接近精确值,1化整为零,2以直代曲(以常代变),3积零为整,1.曲边梯形的面积,.,f(i),.,元素法,4取极限,y=f(x),令分法无限变细,.,.,.,.,分法越细,越接近精确值,1化整为零,2以直代曲(以常代变),3积零为整,1.曲边梯形的面积,.,f(i),S=,.,S,.,.,2,。,。,2.,4,4,4,解方程组:,得交点:(8,4),(2,2),问题:选谁为积分变量?,.,。,。,3.,3,3,得两切线的斜率为,故两切线为,其交点的横坐标为,。,。,S=,l1,l2,.,(),d,o,+d,r=(),元素法,1取极角为积分变量,其变化区间为,以圆扇形面积近似小曲边扇形面积,得到面积元素:,.,.,4.曲边扇形的面积,dS,S,3作定积分,.,r,.,a,圆上任一点所画出的曲线。,5.旋轮线,一圆沿直线无滑动地滚动,,.,来看动点的慢动作,圆上任一点所画出的曲线。,.,一圆沿直线无滑动地滚动,,5.旋轮线,.,2a,2a,a,x=a(tsint)y=a(1cost),t的几何意义如图示,t,a,当t从02,x从02a,即曲线走了一拱,a,圆上任一点所画出的曲线。,5.旋轮线,.,一圆沿直线无滑动地滚动,,.,x=a(tsint)y=a(1cost),将旋轮线的一拱一分为二,并倒置成挡板,6.旋轮线也叫摆线,单摆,.,x=a(tsint)y=a(1cost),将旋轮线的一拱一分为二,并倒置成挡板,.,单摆,6.旋轮线也叫摆线,.,单摆,.,6.旋轮线也叫摆线,x=a(tsint)y=a(1cost),将旋轮线的一拱一分为二,并倒置成挡板,.,两个旋轮线形状的挡板,使摆动周期与摆幅完全无关。在17世纪,旋轮线即以此性质出名,所以旋轮线又称摆线。,单摆,.,6.旋轮线也叫摆线,x=a(tsint)y=a(1cost),将旋轮线的一拱一分为二,并倒置成挡板,.,x=a(tsint),B,A,答案是:当这曲线是一条翻转的旋轮线。,最速降线问题:质点在重力作用下沿曲线从固定点A滑到固定点B,当曲线是什么形状时所需要的时间最短?,y=a(1cost),7.旋轮线是最速降线,生活中见过这条曲线吗?,.,x=a(tsint),B,A,答案是:当这曲线是一条翻转的旋轮线。,最速降线问题:质点在重力作用下沿曲线从固定点A滑到固定点B,当曲线是什么形状时所需要的时间最短?,y=a(1cost),.,生活中见过这条曲线吗?,7.旋轮线是最速降线,.,x=a(tsint),B,A,答案是:当这曲线是一条翻转的旋轮线。,最速降线问题:质点在重力作用下沿曲线从固定点A滑到固定点B,当曲线是什么形状时所需要的时间最短?,y=a(1cost),生活中见过这条曲线吗?,7.旋轮线是最速降线,.,.,x=a(tsint),B,A,答案是:当这曲线是一条翻转的旋轮线。,最速降线问题:质点在重力作用下沿曲线从固定点A滑到固定点B,当曲线是什么形状时所需要的时间最短?,y=a(1cost),生活中见过这条曲线吗?,滑板的轨道就是这条曲线,7.旋轮线是最速降线,.,.,a,a,一圆沿另一圆外缘无滑动地滚动,动圆圆周上任一点所画出的曲线。,8.心形线,(圆外旋轮线),.,a,来看动点的慢动作,一圆沿另一圆外缘无滑动地滚动,动圆圆周上任一点所画出的曲线。,.,8.心形线,(圆外旋轮线),a,.,a,a,2a,来看动点的慢动作,一圆沿另一圆外缘无滑动地滚动,动圆圆周上任一点所画出的曲线。,.,(圆外旋轮线),8.心形线,.,2a,r=a(1+cos),02,0r2a,P,r,一圆沿另一圆外缘无滑动地滚动,动圆圆周上任一点所画出的曲线。,.,(圆外旋轮线),8.心形线,.,a,a,一圆沿另一圆内缘无滑动地滚动,动圆圆周上任一点所画出的曲线。,9.星形线,(圆内旋轮线),.,a,a,来看动点的慢动作,一圆沿另一圆内缘无滑动地滚动,动圆圆周上任一点所画出的曲线。,.,9.星形线,(圆内旋轮线),.,a,a,一圆沿另一圆内缘无滑动地滚动,动圆圆周上任一点所画出的曲线。,来看动点的慢动作,.,9.星形线,(圆内旋轮线),.,a,a,02,或,.,P,.,一圆沿另一圆内缘无滑动地滚动,动圆圆周上任一点所画出的曲线。,.,9.星形线,(圆内旋轮线),.,一直线沿圆周滚转(无滑动)直线上一个定点的轨迹,10.圆的渐伸线,a,.,一直线沿圆周滚转(无滑动)直线上一个定点的轨迹,.,a,10.圆的渐伸线,再看一遍,.,.,a,一直线沿圆周滚转(无滑动)直线上一个定点的轨迹,10.圆的渐伸线,.,.,a,一直线沿圆周滚转(无滑动)直线上一个定点的轨迹,10.圆的渐伸线,.,a,0,x,M,t,t,a,at,(x,y),试由这些关系推出曲线的方程,.,一直线沿圆周滚转(无滑动)直线上一个定点的轨迹,10.圆的渐伸线,.,1.曲线关于y=x对称,2.曲线有渐进线x+y+a=0,分析,3.令y=tx,得参数式,故在原点,曲线自身相交.,11.狄卡儿叶形线,4.,.,x+y+a=0,曲线关于y=x对称,曲线有渐近线x+y+a=0,.,11.狄卡儿叶形线,.,P,r,.,.,.,.,.,.,.,.,.,.,.,曲线在极点自己相交,与此对应的角度为=,.,.,.,.,.,距离之积为a2的点的轨迹,直角系方程,12.双纽线,.,.,所围面积,.,.,.,由对称性,.,12.例,求双纽线,.,0,r,r=a,曲线可以看作这种点的轨迹:,动点在射线上作等速运动,同时此射线又绕极点作等速转动,从极点射出半射线,13.阿基米德螺线,.,0,r,曲线可以看作这种点的轨迹:,动点在射线上作等速运动,同时此射线又绕极点作等速转动,从极点射出半射线,.,13.阿基米德螺线,r=a,.,0,r,曲线可以看作这种点的轨迹:,动点在射线上作等速运动,同时此射线又绕极点作等速转动,从极点射出半射线,再看一遍,请问:动点的轨迹什么样?,.,13.阿基米德螺线,r=a,.,0,r,.,13.阿基米德螺线,r=a,.,0,r,r=a,.,13.阿基米德螺线,.,0,r,r=a,.,13.阿基米德螺线,.,r,这里从0+,8,r=a,0,2a,每两个螺形卷间沿射线的距离是定数,.,13.阿基米德螺线,.,0,r,8,当从0,r=a,.,13.阿基米德螺线,.,r,0,.,这里从0+,8,.,.,14.双曲螺线,.,r,0,.,当从0,8,.,14.双曲螺线,.,15.,2,.,.,S=,=1+cos,3,r=3cos,由3cos=1+cos,得交点的坐标,S,2,.,.,.,.,.,.,.,.,16.,1,令cos2=0,由sin0,联立后得交点坐标,.,.,.,S=2,.,.,17.,1,s1,s2,.,.,.,.,.,.,s,S=,=1+cos,.,求由双纽线,.,.,.,.,由对称性,.,18.,a,内部的面积。,双纽线化成极坐标,令r=0,S=,4,+,.,.,A(x),dV=A(x)dx,x,已知平行截面面积为A(x)的立体,.,a,V,以下是几个例子,19.平行截面面积为已知的立体的体积,b,.,半径为R的正圆柱体被通过其底的直径并与底面成角的平面所截,得一圆柱楔。求其体积。,R,o,x,y,20.,.,o,y,R,x,R,R,20.,.,半径为R的正圆柱体被通过其底的直径并与底面成角的平面所截,得一圆柱楔。求其体积。,.,o,y,R,x,x,y,R,R,.,.,.,.,ytan,问题:还有别的方法吗?,(x,y),截面积,A(x),.,半径为R的正圆柱体被通过其底的直径并与底面成角的平面所截,得一圆柱楔。求其体积。,20.,.,.,o,y,R,x,R,R,方法2,.,20.,半径为R的正圆柱体被通过其底的直径并与底面成角的平面所截,得一圆柱楔。求其体积。,.,o,y,R,x,R,R,方法2,A,B,C,D,BC,DC,.,.,.,.,截面积,S(y),(x,y),=2x,=ytan,.,S(y),.,20.,半径为R的正圆柱体被通过其底的直径并与底面成角的平面所截,得一圆柱楔。求其体积。,.,R,x,o,y,R,21.,求以半径为R的圆为底,平行且等于底圆直径的线段为顶,高为h的正劈锥体的体积。,.,R,x,o,x,A(x),A(x),V=,.,.,.,.,R,y,21.,.,求以半径为R的圆为底,平行且等于底圆直径的线段为顶,高为h的正劈锥体的体积。,y,.,f(x),a,b,曲边梯形:y=f(x),x=a,x=b,y=0绕x轴旋转,22.求旋转体体积,.,f(x),a,b,x,.,.,111111111,.,曲边梯形:y=f(x),x=a,x=b,y=0绕x轴旋转,22.求旋转体体积,V=,x=g(y),c,d,曲边梯形:x=g(y),x=0,y=c,y=d绕y轴,23.求旋转体体积,x=g(y),c,d,曲边梯形:x=g(y),x=0,y=c,y=d绕y轴,.,23.求旋转体体积,x=g(y),c,d,y,.,.,.,23.求旋转体体积,.,曲边梯形:x=g(y),x=0,y=c,y=d绕y轴,.,a,b,f(x),y,x,0,24.求旋转体体积柱壳法,曲边梯形y=f(x),x=a,x=b,y=0绕y轴,x,dx,.,x,a,b,y,x,0,内表面积,.,dx,.,24.求旋转体体积柱壳法,曲边梯形y=f(x),x=a,x=b,y=0绕y轴,dV=,2xf(x)dx,f(x),.,b,y,x,0,a,.,24.求旋转体体积柱壳法,曲边梯形y=f(x),x=a,x=b,y=0绕y轴,dV=,2xf(x)dx,f(x),.,b,y,x,0,a,.,24.求旋转体体积柱壳法,曲边梯形y=f(x),x=a,x=b,y=0绕y轴,dV=,2xf(x)dx,f(x),.,0,y,0,x,b,x,a,dx,.,24.求旋转体体积柱壳法,曲边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汽车美容店跨界合作与联名活动协议范本
- 个人创业投资连带责任担保合同
- 2025至2030中国流变改性剂市场运营规划及前景趋势洞察报告
- 上学的出血病人护理要点
- 口服靶向药物皮疹的护理
- 2025至2030中国鼓式融化机行业产业运行态势及投资规划深度研究报告
- 认识东西南北教学课件
- 颅内积气护理查房
- 夫妻离异后子女抚养权人寿保险保障服务协议
- 二手房买卖合同签订中的合同签订与房屋质量保证
- 2022年新高考I卷读后续写David's run公开课课件-高三英语一轮复习
- 蓄水模块专项监理实施细则
- 创业小白实操手册 第2版 课件 6 做原型小验证-课件标准版
- 《全面质量管理》习题集(含答案)
- 数学游戏(单元复习课件)人教版一年级数学上册
- 北师大版小学数学四年级上册第3单元 乘法《卫星运行时间》教学课件
- 新学期幼儿园小班新生家长会课件
- DL∕T 2559-2022 灯泡贯流式水轮机状态检修评估技术导则
- 热固复合聚苯乙烯防火保温板应用技术规程(征求意见稿)
- 法院书记员考试试题
- 计算机系统原理13015习题答案
评论
0/150
提交评论