数学北师大版九年级上册一元二次方程的概念.pptx_第1页
数学北师大版九年级上册一元二次方程的概念.pptx_第2页
数学北师大版九年级上册一元二次方程的概念.pptx_第3页
数学北师大版九年级上册一元二次方程的概念.pptx_第4页
数学北师大版九年级上册一元二次方程的概念.pptx_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课题:2.1认识一元二次方程的解,引入(复习引入)同学们,上节课我们通过实例建立了一元二次方程,并通过观察归纳出一元二次方程的有关概念,这节课我们共同来探索一元二次方程的解或近似解,引导自主学习,1.使一元二次方程左右两边_相等_的未知数的值,叫做一元二次方程的解,也叫做一元二次方程的根。2对于一元二次方程ax2bxc0(a0)来说,求近似解的过程就是找到这样的x,使ax2bxc的值接近_0_,则可大致确定x的取值范围。3.如果设未铺地毯区域的宽为xm,则可得方程(82x)(52x)=18,化为一般形式为:_你能求出x吗?根据本题实际情况,思考下列问题:(1)x可能小于0吗?说说你的理由;_(2)x可能大于4吗?可能大于2.5吗?为什么?。由以上两题可知x的取值范围是_。,精讲点拨,(一)、一元二次方程的解使一元二次方程左右两边相等的未知数的值,叫做一元二次方程的解,也叫做一元二次方程的根1.下列各数中是x23x20的解的是()A1B1C2D02已知m是方程x2x10的一个根,则代数式m2m的值是()A1B0C1D23已知关于x的一元二次方程2x2mx60的一个根是2,则m_4写出一个根为x1的一元二次方程,它可以是_.5关于x的一元二次方程(a2)x2xa240的一个根为0,则a_,估算一元二次方程的近似解,1.已知x21010,那么它的正数解的整数部分是(C)A8B9C10D11为估算方程x22x80的解,,.阅读课本“做一做”,设梯子底端滑动的距离x(m)满足方程(x+6)2+72=102化为一般形式为:_。(1)小明认为底端也滑动了1米,他的说法正确吗?为什么?(2)底端滑动的距离可能是2米,3米吗?为什么?(3)你能猜出滑动距离x(m)的大致范围吗?(4)x的整数部分是几?十分位是几?,测评反馈,1.方程x2=x的解是()A.1B.1或-1C.0D.1或02根据下列表格中的对应值,判断方程ax2bxc0(a0,a,b,c为常数)一个解x的范围是()X3.233.243.253.26ax2bxc0.060.020.030.09A.3x3.23B3.23x3.24C3.24x3.25D3.25x3.263一元二次方程(a1)x2axa210的一个根为0,则a_,总结提升,教师总结:“估算”在求解实际生活中一些较为复杂的方程时应用广泛。本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法。其具体的指导思想是:将一元二次方程变形为一般形式:ax2+bx+c=0,分别将x1,x2代入等式左边,当获得的值为一正、一负时,方程必定有一根x0,而且x1x0x2。这是因为,当ax12+bx1+c0(或0)而ax22+bx2+c0(或0)且在x1到x2之间由小变大时,ax2+bx+c的值也将由小于0(或大于0),逐步变成大于0(或小于0),其间ax2+bx+c的值必有为0的时候,此时的x值就是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论