




已阅读5页,还剩134页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
可靠性工程,主要内容:一、可靠性基本概念二、可靠性数据统计分析三、可靠性预测、分配四、可靠性保证技术五、机械可靠性设计,主要参考书:1.刘易斯.实用可靠性工程.北京:航空工业出版社2.刘唯信.机械可靠性设计.北京:清华大学出版社3.肖德辉.可靠性工程.北京:航空出版社.4.王超.机械可靠性工程北京:冶金工业出版社,1绪论1.1可靠性是一门新兴的学科1.2可靠性发展简史可靠性工程发展初期阶段(3040年代)1939年英国航空委员会首次提出飞机故障率为0.00001次/h二次大战末期,德国火箭专家Lussen,提出串联系统的概念1942年,MIT开始对真空管机械可靠性研究,一、可靠性工程基本概念,可靠性工程技术发展形成阶段(5060年代)1952年美国成立“电子设备可靠性顾问组”AGREE(AdvisoryGrouponReliabilityofElectronicEquipment)1957年提出电子设备可靠性报告奠定可靠性理论基础1958年美国成立ACGMR导弹可靠性特设委员会1959年美国国防部发布电子设备可靠性大纲MIL-R-25717C1968年美国航空局发布以可靠性为中心的维修大纲60年代末美国40%的大学已经开设了可靠性的课程。,可靠性工程技术发展形成阶段(5060年代)主要是制定各种军用标准、规范,进行可靠性统计试验,建立可靠性标准体系NASA将可靠性工程技术列为登月成功的三大技术成就之一可靠性的国际化阶段(7080年代)可靠性保证阶段,实现以可靠性为中心的管理;从军事领域、电子、航空航天、核能扩展到电力、机械、土木、电力、保险风险评估等领域;从只重视硬件可靠性发展到硬件、软件并举,确保大型复杂设备的可靠性;重视可靠性工程试验,确保产品在规定的条件下具有规定的可靠性水平。,美国六七十年代就将可靠性技术引入汽车、发电设备、拖拉机、发动机等机械产品。80年代,美国罗姆航空研究中心专门作了一次非电子设备可靠性应用情况的调查分析美国国防部可靠性分析中心(RAC)收集和出版了大量的非电子零部件的可靠性数据手册以美国亚利桑那大学D.Kececioglu教授为首的可靠性专家开展机械可靠性设计理论的研究,积极推行概率设计法,提出开展机械概率设计的十五个步骤,由美国、英国、加拿大、澳大利亚和新西兰五国组成的技术合作计划(TTCP)委员会编制出一本常用机械设备可靠性预计手册,阀门、作动器、弹簧、轴承齿轮、花键、连接器离合器、联轴器、万向节电动机、泵、压气机、传感器,日本以民用产品为主,大力推进机械可靠性的应用研究日本科技联盟的一个机械工业可靠性分科会将故障模式、影响(FMEA)等技术成功地引入机械工业的企业中日本企业界普遍认为:机械产品是通过长期使用经验的累积,发现故障经过不断设计改进获得的可靠性日本一方面采用成功的经验设计,同时采用可靠性的概率设计方法的结果以及与实物试验进行比较,总结经验,收集和积累机械可靠性数据,苏联(俄罗斯)对机械可靠性的研究十分重视,在其二十年科技规划中,将提高机械产品可靠性和寿命作为重点任务之一。发布了一系可靠性国家标准,这些标准主要以机械产品为对象,适于机械制造和仪器仪表制造行业的产品在各类机械设备的产品标准中,还规定了可靠性指标或相应的试验方案苏联(俄罗斯)还充分利用丰富的实际经验,研究并提出典型机械零件的可靠性设计可经验公式,专门出版机械可靠性设计手册苏联(俄罗斯)还十分重视工艺可靠性和制造过程的严格控制管理,认为这是保证机械产品可靠性的重要手段,80年代以来机械可靠性研究在我国开始受到重视从1986年起,机械部已经发布了六批限期考核机电产品可靠性指标的清单,前后共有879种产品已经进行可靠性指标的考核1990年11月和1995年10月,机械工业部举行了两次新闻发布会,先后介绍了236和159种带有可靠性指标的机电产品1992年3月国防部科工委委托军用标准化中心在北京召开了“非电产品可靠性工作交流研讨会”2005年GJB450改版,增加机械可靠性内容,1.3可靠性研究的目的和意义A保证和提高产品的可靠性水平B提高经济效益C提高市场竞争力,可靠性的效益一、用户效益1、产品可靠性的提高,防止事故发生,保证用户安全。2、可靠性提高,成本投资相近,用户效益提高。3、可靠性提高,全寿命周期成本下降,节省维修费用。二、企业效益1、可靠性提高,企业竞争力增强。2、可靠性提高,减少事故赔偿费用。,1.4可靠性学科的研究内容可靠性数学研究解决各种可靠性问题的数学方法和数学模型。可靠性物理研究各种失效机理和失效模型可靠性工程以可靠性物理为背景,以可靠性数学为手段,解决各种工程问题,包括可靠性设计、可靠性预计、可靠性分配、可靠性增长、可靠性管理等,可靠性的定义(Reliability):(GB3187-82)产品在规定的条件下和规定的时间内完成规定功能的能力(能力是用概率值表示),Reliability以R表示从数学上讲:可靠性就是研究产品寿命的概率分布,可靠性的三大指标:狭义可靠性、有效性、贮存寿命,可靠性指标的估计:投入N个产品进行试验,到给定时间t时,有Ns个在正常工作;Nf个已经失效,是可靠度估计的平均值,置信度为50%,可靠度=95%表示取100个试样进行试验,到给定时间,仍有95个试样能正常工作。可靠度=95%,置信度=90%表示取100组试样,每组100个,进行试验,到给定时间,至少有90组试样,每组有95个试样能正常工作,产品可靠性指标,极限有效度,可用性,经济性,有效性,维修性,可靠性,平均有效度,瞬时有效度,平均修复时间,可靠寿命,平均寿命,失效率,累积失效概率,可靠性,修复率,维修度,保修费用率,全寿命周期成本,成本比成本可用度,固有可用度,使用可用度,一件产品的可靠度与其生产、存储和使用均有关系RI(InherentReliability)固有可靠度RU(UseReliability)使用可靠度RR(RedundantReliability)储存可靠度,有效性:,可行性研究,要求,技术要求与合同,R要求,R技术要求与合同,设计,零件材料分析加工,失效模式和影响分析,应力和最坏情况分析,冗余分析,M分析,R估计,设计评审,部件-总成制造,研制样机制造,重新设计修改,制造,使用,性能试验,部件-总成试验,环境试验,加速试验,耐久试验,R验证,数据,设计评审,R估计,QC,试验,维修,筛选,数据,数据,R验证,R估计,R估计,可靠性计划流程(BS5760),2、可靠性特征量1.可靠度R(t)可靠度函数,可靠度估计量,不可修复产品试验,三件可修复产品试验,2.累积失效概率F(t),3.失效概率密度函数f(t),4.失效率,失效率估计值,失效率是工作到某时刻尚未失效的产品,在该时刻后单位时间内发生的失效概率,也称为故障率函数。,平均失效率,式中:tfi第i个产品失效前的工作时间Ns整个试验期间未出现失效的产品数Nf整个试验期间出现失效的产品数,失效率单位:1Fit=10-9/h,失效率的三种类型,I早期失效(earlyfailure)DFR(decreasingfailurerate)II偶然失效(randomfailure)CFR(constantfailurerate)III耗散失效(wear-outfailure)IFR(increasingfailurerate),常见的失效率曲线,平均寿命:不可维修产品MTTF(MeanTimetoFailure)可维修产品MTBF(MeanTimebetweenFailure,可靠寿命:给定可靠度,从R(t)=P(Tt)中反解出的t值,中位寿命:给定可靠度为时的寿命,更换寿命:给定,从,中反解出的t值,失效率,概率密度函数,可靠度,累积失效概率,2.可靠性中常用的寿命分布,正态分布:随机变量由大量的互相独立的,微小的随机因素的总和构成,随机变量的均值随机变量的标准差(尺度参数),1、f(t)曲线以m为对称轴2、f(t)曲线在ms处有拐点3、t=m时,f(x)有最大值4、当时,5、曲线f(t)以t轴为渐近线,且6、给定s,改变m,曲线f(t)仅沿t轴偏移7、给定m,改变s,图形对称轴不变但图形本身改变,随机变量的取值落在m3s范围内的概率为99.73%(3s原则),进行正则变换:,则:,标准正态分布,机械可靠性中材料的强度极限、磨损寿命、测量误差等,累积失效概率,可靠度,对数正态分布:,累积失效概率,可靠度,机械可靠性中材料的疲劳强度极限、疲劳寿命等,威布尔分布;由最弱链模型导出,形状参数尺度参数位置参数,累积失效概率,可靠度,失效率,DFR,IFR,CFR,数字特征,三个参数的意义:,1、形状参数:,2、位置参数:,3、尺度参数:,f(t)曲线单调下降,f(t)为指数曲线,f(t)曲线出现峰值后下降,当m=34时可以认为是正态分布,不同的尺度参数,其概率密度函数曲线的宽度和高度均不同,指数分布:,当m=1时的威布尔分布,CRF型,两参数指数分布,指数分布的无记忆性:寿命服从指数分布的元件,工作到t0时,如仍能正常工作,在tt0后的工作寿命仍然是原来的分布,指数分布的无记忆性表明:一个寿命服从指数分布的元件,已经工作到t0,再工作t后的可靠性与t0无关。,I型极值分布:,I型极大值分布:,作变换:,标准极大值分布,R(t),l(t),f(t),I型极小值分布:,作变换:,标准极小值分布,3.1串联系统的可靠性模型,若各事件互相独立,3系统可靠性模型,特别地如果各个单元的寿命为指数分布,例:某系统由三个单元串联构成,若各个单元的平均失效时间分别为250,100,250h,求系统的平均失效时间,并求系统和各个单元再30h的可靠度(设各个单元均服从指数分布),3.2并联系统的可靠性模型,事件As和Ai为系统和单元正常工作,事件As和Ai为系统和单元不正常工作,若各个单元寿命为指数分布,求系统平均寿命:,上式表明并联系统的寿命不再服从指数分布,当n=2时,当各个单元的失效率相同时,当较大时,当n=2时,当n=3时,例:某液压系统,采用2个滤油器组成串联系统,滤油器的失效有两种模式,即堵塞和破损。设两种模式的失效率相同,分别为,工作时间为1000小时,试求:(1)在堵塞情况下,系统可靠度、失效率和平均寿命。(2)在破损情况下,系统可靠度、失效率和平均寿命。,结构图,堵塞可靠性模型,破损可靠性模型,3.3、串并联系统(附加单元系统),3.4并串联系统(附加通路系统),m条,3.5复杂的混联系统,3.6n中取k表决系统可靠性模型,1、2/3G系统,若各个单元寿命为指数分布,当各个单元的失效率相同时,2、(n-1)/nG系统,当各个单元的可靠度相同时,特别地如果各个单元的寿命为指数分布,例:设单元寿命服从指数分布,失效率为0.0011/h,求100h和1000h时下述系统的可靠度。(1)一个单元系统;(2)二单元串联系统;(3)二单元并联系统;(4)2/3表决系统,T=100h,T=1000h,3.7贮备系统可靠性模型,1、冷贮备系统,系统平均寿命,概率密度函数,1)、当两个单元的寿命为指数分布时,当两个单元的失效率相等时,2)、当n个单元的寿命为失效率相等的指数分布时,3)、若一个系统,需要L个单元同时工作,系统才工作,另有n个单元作贮备,每个单元的寿命为失效率相等的指数分布。,L个单元工作的可靠度为,4)、若一个二单元系统,其每个单元的可靠度为,寿命为,当单元A1失效,若开关已失效,系统的寿命就是单元A1的寿命,当单元A1失效,若开关不失效,系统的寿命就是单元A1加A2的寿命,系统的可靠度和平均寿命为,特别地,若开关不使用时,其失效率为0,使用时,可靠度为,此时系统的可靠度和平均寿命为,特别地,2、热贮备系统,1)、开关完全可靠的两单元热贮备系统,假设一个单元工作,其可靠度为另一个单元作热贮备,贮备期间可靠度为工作时可靠度为,如果将备用单元在备用期内的可靠度等价地视为开关不完全可靠时的可靠度。则可以利用冷贮备系统的公式,特别地,为两单元冷贮备系统,为两单元并联系统,2)、开关不完全可靠的两单元热贮备系统,设工作单元、贮备单元在工作期间和开关的寿命分别为而备用单元在备用期的寿命为X。且均服从指数分布,其失效率为,系统的可靠度和平均寿命为,特别地,若开关不使用时,其失效率为0,使用时,可靠度为,此时系统的可靠度和平均寿命为,3.8一般网络系统可靠性模型,并网供电系统,1、结构函数,1、最小路集和最小割集,系统由n个单元组成,用二值变量xi表示第i个单元状态,1表示工作,0表示失效,则系统状态可用下述结构函数表示:,路集是系统单元状态变量的子集,当子集中所有的单元工作时系统工作。任一单元失效时系统发生失效的路集成为最小路集。,割集是系统单元状态变量的子集,当子集中所有的单元失效时系统失效。任一单元工作时系统不发生失效的割集成为最小割集。,如图所示的网络系统,求系统所有的路集、割集、最小路集和最小割集,路集,最小路集,割集,最小割集,2、状态枚举法,状态7系统正常工作的概率为,系统正常工作的事件为,系统可靠度为,概率图法是在状态枚举法的基础上进行,3、概率图法,采用Gary编码编排表头,以“1”表示系统或单元工作,以“0”表示系统或单元失效。下图是六个单元组成系统的概率图,各个方块从左至右进行合并简化的经过为:,4、全概率分解法,应用全概率分解法首先选择系统中的任意一个单元,然后按该单元处于工作与失效两种状态,用全概率公式计算系统的可靠度。,则系统可靠度为:,设选择单元Ax的可靠度为不可靠度为,为单元Ax工作条件下,系统工作的概率;,为单元Ax失效条件下,系统工作的概率;,则系统可靠度为:,4、贝叶斯方法,假定B1,B2,,Bn是样本空间的一个划分,由条件概率的定义,由全概率公式,引起事件A发生的原因是n个互不相容的事件B1,B2,,Bn中的若干个。当A发生时,要寻求其发生的原因,必须求得A出现的条件下,Bi发生的概率。概率最大者,认为是引起A发生的原因。,也可以理解为先验概率和后验概率的关系。,离心泵出口管路中安装有三个阀门,三个中任意两个失效,系统失效。已知三个阀门失效概率分别为20%,40%和30%,问整个系统发生故障的原因。,用事件B1表示第一和第二阀门失效,事件B2表示第一和第三阀门失效,事件B3表示第三和第二阀门失效第三个阀门未失效。,利用乘法公式,用事件B1,B2,B3只有一个发生,事件A必然发生,用事件A表示系统失效。,某增压系统,当增压机完好率为75%时,系统能够实现额定能力的80%,当增压机发生某种故障,处于“不满负荷”状态时,系统能够完成额定能力的30%,设计一个新系统要求达到额定能力,增压机的完好率,A为系统达到额定能力,B1为增压机运行完好,B2为增压机”不满负荷“,对于事件A和B,由贝叶斯定理得到的公式为,事件A发生的概率,假定事件B发生时事件发生的概率,事件B不发生的概率,系统成功的概率,设备D成功的概率,如果D的可靠度为RD,则:,系统可靠度为:,二、可靠性数据的统计分析,可靠性数据统计分析方法1、参数方法2、非参数方法,非参数方法,N为产品数,到t时刻有Ns个再工作,有Nf个失效,时间内的平均失效概率密度和平均失效率为,参数方法,1、参数估计,X母体分布函数F(x)未知,求E(X),D(X)X母体分布函数已知,求分布参数X母体分布函数已知,求数字特征点估计区间估计,设容量为n的子样,X1,X2,X3,Xn,为未知分布参数,区间估计,点估计,点估计,无偏性一致性有效性,若,则称,的无偏估计量,若,的无偏估计量,则称,的一致估计量,若,均为的无偏估计量,如果:,则称,更有效,点估计方法,用子样的各阶矩去估计母体的各阶矩,K阶原点矩,K阶中心矩,如果分布函数形式已知,参数未知,若母体的各阶矩已知,若对母体进行n次观察,得到子样各阶矩,令,利用前m阶矩得到m个方程,从而解得分布参数,无偏估计,偏态系数,峰度,2、极大似然法,当母体分布已知,对于连续型随机变量的PDF为,母体x的子样的联合概率密度函数为,若有,构造似然函数,使得,则称,为母体的极大似然(最大可能性)估计量,似然方程,由于似然函数取对数后与原函数在同一点取得极值,解方程求得分布参数,求两参数威布尔分布的极大似然估计,解上方程得:,数值解法,最小二乘法,累积失效分布函数值的估计(秩RANK),取容量为n的子样,并排乘顺序子样,另取容量为n的子样,并排乘顺序子样,F(xi)是一随机变量,服从分布,其概率密度函数为:,或,均方误差,1,2,3,4,求两参数威布尔分布的最小二乘估计,因为,令,则,设有n个子样,排成顺序子样:,令,则,由最小二乘法,联立求解得,作逆变换,则区间为的置信区间,区间估计,由于点估计本身是一个随机变量,因此需要知道其范围和该参数被包含在其中得可能性,设母体的PDF为f(x,),其中未知,对于给定的(0502、若F0中有r个未知数,可由矩法或极大似然法确定,这时自由度为m-r-1。3、工程中将自由度由m-1变为m-2,法兰盘垫片的密封试验,在规定的泄漏率指标下,测得的50个泄漏压力为:15.2,15.0,14.9,14.8,14.5,15.1,15.5,15.5,15.1,15.1,15.0,15.3,14.7,14.5,15.5,15.0,14.7,14.6,14.2,15.9,15.2,15.8,14.6,14.2,14.9,15.1,15.6,15.3,15.0,15.2,14.9,14.9,14.2,14.5,14.8,15.7,15.6,15.0,15.3,15.1,15.3,15.6,15.5,14.8,14.7,15.9,15.1,15.2,15.8,15.0,假设为正态分布,由矩法估计得:,故,子样分组间隔为0.3,给定,自由度为7-2-2,K-S检验法:(柯尔莫哥洛夫斯米尔诺夫),设母体分布函数为:,为已知的分布函数形式,统计量为,其中,当给定时,拒绝H0,接受H0,压缩机阀片的疲劳试验结果如下(单位:小时),1600,900,420,1060,1200,1300,920,试问寿命是否为指数分布,由矩法得,接受H0假设,3、概率纸方法,(比较简单直观的工程方法),如果随机变量,作变换,则有,随机变量X与标准正态分布的随机z之间存在线型关系,而每给定z值就有一个相应的,正态概率坐标纸,1、如果x服从正态分布,则在正态概率坐标纸上为一直线,2、在直线的两边可以进行区间估计,3、如果未知分布,但绝大多数点在某一直线附近,可以进行点估计,4、如果已知x为正态分布,但在图中不是直线,说明某些数据点有问题,需查找原因,正态概率坐标纸的作用,正态概率坐标纸的使用,1、将数据排成顺序子样,2、估计累积失效概率,3、点数据,看是否是直线,点估计,区间估计,对于给定显著水平或置信度(1-)和子样容量n,可以查表求得,可靠寿命区间估计,给定R0,作一水平线,得到相应的tL0,t0,tU0,分别表示可靠寿命的下限、中值和上限。,可靠度区间估计,给定t,作一垂直线,得到相应的FL(T),F(t),FU(t),分别表示失效概率的下限、中值和上限。,相应的可靠度的下限、中值和上限为1-FL(T),1-F(t),1-FU(t),,另外还可以比较两批产品是否有明显差异。,8个弹簧进行寿命试验结果如下,图估计,解析法,如果随机变量服从对数正态分布,取对数后为正态分布,作变换,则有,对数正态概率坐标纸,与正态概率坐标纸相比,对数正态概率坐标纸只是将横坐标由线性坐标变成对数坐标。,注意:,威布尔概率坐标纸,参数估计,m的估计:过(1,0)点作一条平行线。由点斜式,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汉字“牛”的讲解课件
- 水银血压计使用课件
- 混凝土养护与加速养护方案
- 学生宿舍照明节能与智能控制方案
- 混凝土混合物的性能检测与控制方案
- 标准厂房安全出口与疏散方案
- 水电镀基础知识培训课件
- 胰岛素赵娜娜51课件
- 二零二五版服务业劳动保障监察及员工权益保障合同
- 二零二五年度公务车借用协议书模板
- 初中数学-综合与实践 哪一款“套餐”更合适教学课件设计
- 采油采气井控题库
- “三重一大”决策 标准化流程图 20131017
- Cpk 计算标准模板
- 精选浙江省普通高中生物学科教学指导意见(2023版)
- “魅力之光”核电知识竞赛试题答案(二)(110道)
- 外科学课件:食管癌
- 汽机专业设备运行日常点检
- GB/T 2820.12-2002往复式内燃机驱动的交流发电机组第12部分:对安全装置的应急供电
- 设备基础知识-动设备课件
- GB/T 12599-2002金属覆盖层锡电镀层技术规范和试验方法
评论
0/150
提交评论